Unknown

Dataset Information

0

Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing.


ABSTRACT: Information processing by cerebellar molecular layer interneurons (MLIs) plays a crucial role in motor behavior. MLI recruitment is tightly controlled by the profile of short-term plasticity (STP) at granule cell (GC)-MLI synapses. While GCs are the most numerous neurons in the brain, STP diversity at GC-MLI synapses is poorly documented. Here, we studied how single MLIs are recruited by their distinct GC inputs during burst firing. Using slice recordings at individual GC-MLI synapses of mice, we revealed four classes of connections segregated by their STP profile. Each class differentially drives MLI recruitment. We show that GC synaptic diversity is underlain by heterogeneous expression of synapsin II, a key actor of STP and that GC terminals devoid of synapsin II are associated with slow MLI recruitment. Our study reveals that molecular, structural and functional diversity across GC terminals provides a mechanism to expand the coding range of MLIs.

SUBMITTER: Dorgans K 

PROVIDER: S-EPMC6533085 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing.

Dorgans Kevin K   Demais Valérie V   Bailly Yannick Y   Poulain Bernard B   Isope Philippe P   Doussau Frédéric F  

eLife 20190513


Information processing by cerebellar molecular layer interneurons (MLIs) plays a crucial role in motor behavior. MLI recruitment is tightly controlled by the profile of short-term plasticity (STP) at granule cell (GC)-MLI synapses. While GCs are the most numerous neurons in the brain, STP diversity at GC-MLI synapses is poorly documented. Here, we studied how single MLIs are recruited by their distinct GC inputs during burst firing. Using slice recordings at individual GC-MLI synapses of mice, w  ...[more]

Similar Datasets

| S-EPMC4689869 | biostudies-literature
2013-01-17 | E-GEOD-26750 | biostudies-arrayexpress
2013-01-17 | GSE26750 | GEO
| S-EPMC9436960 | biostudies-literature
2013-01-17 | E-GEOD-26751 | biostudies-arrayexpress
| S-EPMC5877922 | biostudies-literature
2016-03-18 | GSE78460 | GEO
2016-11-08 | GSE88567 | GEO
2013-01-17 | GSE26751 | GEO
| S-EPMC4518301 | biostudies-literature