Unknown

Dataset Information

0

APC/C: current understanding and future perspectives.


ABSTRACT: The separation of sister chromatids at anaphase, which is regulated by an E3 ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C), is arguably the most important irrevocable event during the cell cycle. The APC/C and cyclin-dependent kinase 1 (Cdk1) are just two of the many significant cell cycle regulators and exert control through ubiquitylation and phosphorylation, respectively. The temporal and spatial regulation of the APC/C is achieved by multiple mechanisms, including phosphorylation, interaction with the structurally related co-activators Cdc20 and Cdh1, loading of distinct E2 ubiquitin-conjugating enzymes, binding with inhibitors and differential affinities for various substrates. Since the discovery of APC/C 25 years ago, intensive studies have uncovered many aspects of APC/C regulation, but we are still far from a full understanding of this important cellular machinery. Recent high-resolution cryogenic electron microscopy analysis and reconstitution of the APC/C have greatly advanced our understanding of molecular mechanisms underpinning the enzymatic properties of APC/C. In this review, we will examine the historical background and current understanding of APC/C regulation.

SUBMITTER: Yamano H 

PROVIDER: S-EPMC6534075 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

APC/C: current understanding and future perspectives.

Yamano Hiroyuki H  

F1000Research 20190523


The separation of sister chromatids at anaphase, which is regulated by an E3 ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C), is arguably the most important irrevocable event during the cell cycle. The APC/C and cyclin-dependent kinase 1 (Cdk1) are just two of the many significant cell cycle regulators and exert control through ubiquitylation and phosphorylation, respectively. The temporal and spatial regulation of the APC/C is achieved by multiple mechanisms, including  ...[more]

Similar Datasets

2019-08-10 | GSE135618 | GEO
| S-EPMC5565955 | biostudies-other
| S-EPMC10526045 | biostudies-literature
| S-EPMC5126092 | biostudies-literature
| S-EPMC10695468 | biostudies-literature
| S-EPMC6525794 | biostudies-literature
| S-EPMC2903685 | biostudies-literature
| S-EPMC3584306 | biostudies-other
| S-EPMC3270265 | biostudies-other
| S-EPMC8388041 | biostudies-literature