Unknown

Dataset Information

0

BR deficiency causes increased sensitivity to drought and yield penalty in cotton.


ABSTRACT: BACKGROUND:Brassinosteroids (BRs) play crucial roles in drought tolerance, but the underlying molecular mechanisms remain unclear in the important oilseed and fiber crop, cotton (Gossypium hirsutum L.). RESULTS:To elucidate how BRs mediate drought tolerance in cotton, a cotton brassinosteroid (BR)-deficient mutant, pag1 (pagoda1), was employed for analysis. Importantly, the pag1 mutant showed increased sensitivity to drought stress, with shorter primary roots and fewer lateral roots. The number of stomata was significantly increased in the mutant, and the stomata aperture was much wider than that of the control plants. These mutant plants therefore showed an increased water loss rate. Furthermore, the abscisic acid (ABA) content, photosynthetic efficiency and starch content of the mutant were significantly lower than those of the wild type. The overall performance of the mutant plants was worse than that of the wild-type control under both normal and drought conditions. Moreover, Proteomic analysis revealed reduced levels of stress-related proteins in pag1 plants. CONCLUSIONS:These results suggest that BRs may modulate the drought tolerance of cotton by regulating much genes that related to drought stress and multiple organ responses to drought, including root growth, stomata development, the stomata aperture and photosynthesis. This study provides an important basis for understanding drought resistance regulated by BRs and cultivating drought-resistant cotton lines.

SUBMITTER: Chen E 

PROVIDER: S-EPMC6537406 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

BR deficiency causes increased sensitivity to drought and yield penalty in cotton.

Chen Eryong E   Zhang Xueyan X   Yang Zuoren Z   Zhang Chaojun C   Wang Xiaoqian X   Ge Xiaoyang X   Li Fuguang F  

BMC plant biology 20190528 1


<h4>Background</h4>Brassinosteroids (BRs) play crucial roles in drought tolerance, but the underlying molecular mechanisms remain unclear in the important oilseed and fiber crop, cotton (Gossypium hirsutum L.).<h4>Results</h4>To elucidate how BRs mediate drought tolerance in cotton, a cotton brassinosteroid (BR)-deficient mutant, pag1 (pagoda1), was employed for analysis. Importantly, the pag1 mutant showed increased sensitivity to drought stress, with shorter primary roots and fewer lateral roo  ...[more]

Similar Datasets

| S-EPMC8110665 | biostudies-literature
2019-07-03 | GSE133746 | GEO
| S-EPMC5427459 | biostudies-literature
| S-EPMC4556478 | biostudies-literature
| S-EPMC3806807 | biostudies-literature
| S-EPMC9838200 | biostudies-literature
| S-EPMC9280337 | biostudies-literature
| S-EPMC9894396 | biostudies-literature
| S-EPMC4129107 | biostudies-literature
| S-EPMC4817086 | biostudies-literature