Unknown

Dataset Information

0

Silicon Substitution in Nanotubes and Graphene via Intermittent Vacancies.


ABSTRACT: The chemical and electrical properties of single-walled carbon nanotubes (SWCNTs) and graphene can be modified by the presence of covalently bound impurities. Although this can be achieved by introducing chemical additives during synthesis, it often hinders growth and leads to limited crystallite size and quality. Here, through the simultaneous formation of vacancies with low-energy argon plasma and the thermal activation of adatom diffusion by laser irradiation, silicon impurities are incorporated into the lattice of both materials. After an exposure of ?1 ion/nm2, we find Si-substitution densities of 0.15 nm-2 in graphene and 0.05 nm-2 in nanotubes, as revealed by atomically resolved scanning transmission electron microscopy. In good agreement with predictions of Ar irradiation effects in SWCNTs, we find Si incorporated in both mono- and divacancies, with ?2/3 being of the first type. Controlled inclusion of impurities in the quasi-1D and -2D carbon lattices may prove useful for applications such as gas sensing, and a similar approach might also be used to substitute other elements with migration barriers lower than that of carbon.

SUBMITTER: Inani H 

PROVIDER: S-EPMC6539548 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Silicon Substitution in Nanotubes and Graphene via Intermittent Vacancies.

Inani Heena H   Mustonen Kimmo K   Markevich Alexander A   Ding Er-Xiong EX   Tripathi Mukesh M   Hussain Aqeel A   Mangler Clemens C   Kauppinen Esko I EI   Susi Toma T   Kotakoski Jani J  

The journal of physical chemistry. C, Nanomaterials and interfaces 20190426 20


The chemical and electrical properties of single-walled carbon nanotubes (SWCNTs) and graphene can be modified by the presence of covalently bound impurities. Although this can be achieved by introducing chemical additives during synthesis, it often hinders growth and leads to limited crystallite size and quality. Here, through the simultaneous formation of vacancies with low-energy argon plasma and the thermal activation of adatom diffusion by laser irradiation, silicon impurities are incorpora  ...[more]

Similar Datasets

| S-EPMC3806408 | biostudies-literature
| S-EPMC2893836 | biostudies-literature
| S-EPMC5029287 | biostudies-literature
| S-EPMC8000350 | biostudies-literature
| S-EPMC5916463 | biostudies-literature
| S-EPMC4606795 | biostudies-literature
| S-EPMC7770896 | biostudies-literature
| S-EPMC8154123 | biostudies-literature
2017-09-30 | GSE83516 | GEO
| S-EPMC8482752 | biostudies-literature