Unknown

Dataset Information

0

Glucose metabolism is differentially altered by choline and methionine in bovine neonatal hepatocytes.


ABSTRACT: Choline and methionine serve essential roles in the liver that may interact with glucose metabolism. Our objectives were to quantify glucose export, cellular glycogen, and expression of genes controlling oxidation and gluconeogenesis in primary bovine neonatal hepatocytes exposed to increasing concentrations of choline chloride (CC) and D,L-methionine (DLM) with or without fatty acids (FA). Primary hepatocytes isolated from 3 Holstein calves were maintained as monolayer cultures for 24 h before treatment with CC (61, 128, 2028, 4528 ?mol/L) and DLM (16, 30, 100, 300 ?mol/L) with or without a 1 mmol/L FA cocktail in a factorial design. After 24 h, media was harvested to quantify glucose, ?-hydroxybutyrate (BHB), and cells harvested to quantify glycogen, DNA, and gene expression. No interactions between CC and DLM were detected. The potential two-way interaction between CC or DLM and FA was partitioned into three contrasts when P ? 0.20: linear without FA, linear with FA, difference of slope. Fatty acids did not affect glucose or cellular glycogen but increased pyruvate carboxylase (PC), cytosolic and mitochondrial phosphoenolpyruvate carboxykinase (PEPCKc, PEPCKm), and glucose-6-phosphatase (G6PC) expression. Increasing CC decreased glucose but increased cellular glycogen. Expression of PC and PEPCKc was increased by CC during FA treatment. Increasing DLM did not affect metabolites or PC expression, although PEPCKc was marginally decreased. Methionine did not affect G6PC, while CC had a marginal quadratic effect on G6PC. Oxidative and gluconeogenic enzymes appear to respond to FA in primary bovine neonatal hepatocytes. Increased PC and PEPCKc by CC during FA treatment suggest increased gluconeogenic capacity. Changes in G6PC may have shifted glucose-6-phosphate towards cellular glycogen; however, subsequent examination of G6PC protein is needed. Unaltered PC and marginally decreased PEPCKc suggest increased oxidative capacity with DLM, although BHB export was unaltered. The differential regulation supports unique effects of CC and DLM within bovine hepatocytes.

SUBMITTER: Chandler TL 

PROVIDER: S-EPMC6541273 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Glucose metabolism is differentially altered by choline and methionine in bovine neonatal hepatocytes.

Chandler Tawny L TL   White Heather M HM  

PloS one 20190529 5


Choline and methionine serve essential roles in the liver that may interact with glucose metabolism. Our objectives were to quantify glucose export, cellular glycogen, and expression of genes controlling oxidation and gluconeogenesis in primary bovine neonatal hepatocytes exposed to increasing concentrations of choline chloride (CC) and D,L-methionine (DLM) with or without fatty acids (FA). Primary hepatocytes isolated from 3 Holstein calves were maintained as monolayer cultures for 24 h before  ...[more]

Similar Datasets

| S-EPMC5289486 | biostudies-literature
| S-EPMC10046082 | biostudies-literature
| S-EPMC4290132 | biostudies-literature
| S-EPMC3787771 | biostudies-literature
| S-EPMC4297549 | biostudies-literature
| S-EPMC9478460 | biostudies-literature
| S-EPMC6411625 | biostudies-literature
| S-EPMC5763915 | biostudies-literature
| S-EPMC1162990 | biostudies-other
| S-EPMC8614563 | biostudies-literature