Continuous renal replacement therapy: a potential source of calories in the critically ill.
Ontology highlight
ABSTRACT: Background: Overfeeding can lead to multiple metabolic and clinical complications and has been associated with increased mortality in the critically ill. Continuous venovenous hemofiltration (CVVH) represents a potential source of calories that is poorly recognized and may contribute to overfeeding complications.Objective: We aimed to quantify the systemic caloric contribution of acid-citrate-dextrose regional anticoagulation and dextrose-containing replacement fluids in the CVVH circuit.Design: This was a prospective study in 10 critically ill adult patients who received CVVH from April 2014 to June 2014. Serial pre- and postfilter blood samples (n = 4 each) were drawn and analyzed for glucose and citrate concentrations on each of 2 consecutive days.Results: Participants included 5 men and 5 women with a mean ± SEM age of 61 ± 4 y (range: 42-84 y) and body mass index (in kg/m2) of 28 ± 2 (range: 18.3-36.2). There was generally good agreement between data on the 2 study days (CV: 7-11%). Mean ± SEM pre- and postfilter venous plasma glucose concentrations in the aggregate group were 152 ± 10 and 178 ± 9 mg/dL, respectively. Net glucose uptake from the CVVH circuit was 54 ± 5 mg/min and provided 295 ± 28 kcal/d. Prefilter plasma glucose concentrations were higher in patients with diabetes (n = 5) than in those without diabetes (168 ± 12 compared with 140 ± 14 mg/dL; P < 0.05); however, net glucose uptake was similar (46 ± 8 compared with 61 ± 6 mg/min; P = 0.15). Mean ± SEM pre- and postfilter venous plasma citrate concentrations were 1 ± 0.1 and 3.1 ± 0.2 mmol/L, respectively. Net citrate uptake from the CVVH circuit was 60 ± 2 mg/min and provided 218 ± 8 kcal/d.Conclusions: During CVVH there was a substantial net uptake of both glucose and citrate that delivered exogenous energy and provided ?512 kcal/d. Failure to account for this source of calories in critically ill patients receiving nutrition on CVVH may result in overfeeding.
SUBMITTER: New AM
PROVIDER: S-EPMC6546225 | biostudies-literature | 2017 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA