Unknown

Dataset Information

0

Association of Intraocular Cataract Lens Replacement With Circadian Rhythms, Cognitive Function, and Sleep in Older Adults.


ABSTRACT:

Importance

Cataract is associated with a progressive decline in light transmission due to the clouding and yellowing of the natural crystalline lens. While the downstream effects of aging lenses include long-term disruption of circadian rhythms, cognitive function, and sleep regulation, it remains unknown whether there is an association of intraocular cataract lens (IOLs) replacement with circadian rhythms, cognition, and sleep.

Objective

To test whether IOL replacement (blue blocking [BB] or ultraviolet [UV] only blocking) in older patients with previous cataract is associated with the beneficial light effects on the circadian system, cognition, and sleep regulation.

Design, setting, and participants

Cross-sectional study at the Centre for Chronobiology, University of Basel in Switzerland from February 2012 to April 2014, analyzed between June 2012 and September 2018. Sixteen healthy older controls and 13 patients with previous cataract and IOL replacement participated without medication and no medical and sleep comorbidities.

Exposures

Three and a half hours of prior light control (dim-dark adaptation), followed by 2 hours of evening blue-enriched (6500 K) or non-blue-enriched light exposure (3000 K and 2500 K), 30 minutes in dim post-light exposure, 8 hours of sleep opportunity, and 2 hours of morning dim light following sleep.

Main outcomes and measures

Salivary melatonin, cognitive tests, and sleep structure and electroencephalographic activity to test the association of IOLs with markers of circadian rhythmicity, cognitive performance, and sleep regulation, respectively.

Results

The participants included 16 healthy older controls with a mean (standard error of the mean [SEM]) of 63.6 (5.6) years; 8 women and 13 patients with previous cataract (mean [SEM] age, 69.9 [5.2] years; 10 women); 5 patients had UV IOLs and 8 had BB IOLs. Patients with previous cataract and IOLs had an attenuated increase in melatonin levels during light exposure (mean [SEM] increase in the BB group: 23.3% [2.6%] and in the UV lens group: 19.1% [2.1%]) than controls (mean [SEM] increase, 48.8% [5.2%]) (difference between means, 27.7; 95% CI, 15.4%-41.7%; P < .001). Cognitive function, indexed by sustained attention performance, was improved in patients with UV lens (mean [SEM], 276.9 [11.1] milliseconds) compared with patients with BB lens (mean [SEM], 348.3 [17.8] milliseconds) (difference between means, 71.4; 95% CI, 29.5%-113.1%; P = .002) during light exposure and in the morning after sleep. Patients with UV lens had increased slow-wave sleep (mean [SEM] increase, 13% [3.4%]) compared with controls (mean [SEM] increase, 5.2% [0.8%]) (percentage of total sleep time; difference between means, 7.9; 95% CI, 2.4%-13.4%; P = .02) and frontal non-rapid eye movement slow-wave activity (0.75-4.5 Hz) during the first sleep cycle (mean [SEM], 79.9 [13.6] μV2/Hz) compared with patients with BB lens (mean [SEM], 53.2 [10.7] μV2/Hz) (difference between means, 26.7; 95% CI, 9.2-48.9; P = .03).

Conclusions and relevance

These in-laboratory empirical findings suggest that optimizing the spectral lens transmission in patients with previous cataract may minimize the adverse age-related effects on circadian rhythms, cognition, and sleep.

SUBMITTER: Chellappa SL 

PROVIDER: S-EPMC6547224 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6733834 | biostudies-literature
| S-EPMC7210857 | biostudies-literature
| S-EPMC7064945 | biostudies-literature
| S-EPMC7311225 | biostudies-literature
| S-EPMC7993776 | biostudies-literature
| S-EPMC7875381 | biostudies-literature
| S-EPMC5886477 | biostudies-literature
| S-EPMC6200906 | biostudies-literature
| S-EPMC6515876 | biostudies-literature
| S-EPMC10696486 | biostudies-literature