Production of trehalose with trehalose synthase expressed and displayed on the surface of Bacillus subtilis spores.
Ontology highlight
ABSTRACT: BACKGROUND:Bacillus subtilis spores have been commonly used for the surface display of various food-related or human antigens or enzymes. For successful display, the target protein needs to be fused with an anchor protein. The preferred anchored proteins are the outer-coat proteins of spores; outer-coat proteins G (CotG) and C (CotC) are commonly used. In this study, mutant trehalose synthase (V407M/K490L/R680E TreS) was displayed on the surface of B. subtilis WB800n spores using CotG and CotC individually or in combination as an anchoring protein. RESULTS:Western blotting, immunofluorescence, dot blot, and enzymatic-activity assays detected TreS on the spore surface. The TreS activity with CotC and CotG together as the anchor protein was greater than the sum of the enzymatic activities with CotC or CotG alone. The TreS displayed on the spore surface with CotC and CotG together as the anchoring protein showed elevated and stable specific activity. To ensure spore stability and prevent spore germination in the trehalose preparation system, two germination-specific lytic genes, sleB and cwlJ, were deleted from the B. subtilis WB800n genome. It was demonstrated that this deletion did not affect the growth and spore formation of B. subtilis WB800n but strongly inhibited germination of the spores during transformation. The conversion rate of trehalose from 300 g/L maltose by B. subtilis strain WB800n(?sleB, ?cwlJ)/cotC-treS-cotG-treS was 74.1% at 12 h (350 U/[g maltose]), and its enzymatic activity was largely retained, with a conversion rate of 73% after four cycles. CONCLUSIONS:The spore surface display system based on food-grade B. subtilis with CotC and CotG as a combined carrier appears to be a powerful technology for TreS expression, which may be used for the biotransformation of D-maltose into D-trehalose.
SUBMITTER: Liu H
PROVIDER: S-EPMC6547511 | biostudies-literature | 2019 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA