Project description:One of the most important human social skills is the ability to recognize faces. Humans recognize familiar faces easily, and can learn to identify unfamiliar faces from repeatedly presented images. Sheep are social animals that can recognize other sheep as well as familiar humans. Little is known, however, about their holistic face-processing abilities. In this study, we trained eight sheep (Ovis aries) to recognize the faces of four celebrities from photographic portraits displayed on computer screens. After training, the sheep chose the 'learned-familiar' faces rather than the unfamiliar faces significantly above chance. We then tested whether the sheep could recognize the four celebrity faces if they were presented in different perspectives. This ability has previously been shown only in humans. Sheep successfully recognized the four celebrity faces from tilted images. Interestingly, there was a drop in performance with the tilted images (from 79.22 ± 7.5% to 66.5 ± 4.1%) of a magnitude similar to that seen when humans perform this task. Finally, we asked whether sheep could recognize a very familiar handler from photographs. Sheep identified the handler in 71.8 ± 2.3% of the trials without pretraining. Together these data show that sheep have advanced face-recognition abilities, comparable with those of humans and non-human primates.
Project description:In response to the COVID-19 pandemic, many governments around the world now recommend, or require, that their citizens cover the lower half of their face in public. Consequently, many people now wear surgical face masks in public. We investigated whether surgical face masks affected the performance of human observers, and a state-of-the-art face recognition system, on tasks of perceptual face matching. Participants judged whether two simultaneously presented face photographs showed the same person or two different people. We superimposed images of surgical masks over the faces, creating three different mask conditions: control (no masks), mixed (one face wearing a mask), and masked (both faces wearing masks). We found that surgical face masks have a large detrimental effect on human face matching performance, and that the degree of impairment is the same regardless of whether one or both faces in each pair are masked. Surprisingly, this impairment is similar in size for both familiar and unfamiliar faces. When matching masked faces, human observers are biased to reject unfamiliar faces as "mismatches" and to accept familiar faces as "matches". Finally, the face recognition system showed very high classification accuracy for control and masked stimuli, even though it had not been trained to recognise masked faces. However, accuracy fell markedly when one face was masked and the other was not. Our findings demonstrate that surgical face masks impair the ability of humans, and naïve face recognition systems, to perform perceptual face matching tasks. Identification decisions for masked faces should be treated with caution.
Project description:To study individual recognition in animals, discrimination tasks are often conducted by presenting 2D images of real conspecifics. However, animals may discriminate the images merely as visual stimulus combinations without establishing referential relationships to the individuals depicted. In the current study, we investigated whether goats are able to discriminate photos of familiar and unfamiliar conspecifics, whether they not only process the photos as visual stimuli, but also understand them as virtual copies of real conspecifics and whether they grasp the concept of familiarity. Using a computer-controlled learning device, in three tests, goats of two experimental groups (A and B) had to discriminate portrait (Te1), profile (Te2) or headless body photos (Te3) of conspecifics. Tests were presented as 4-choice tasks, with one photo from Group A (rewarded) plus three photos from Group B (distractors). That is, the rewarded photo was familiar to Group A, but unfamiliar to Group B. Finally, in a reversal test (Te4) we reversed this principle. The goats learned the discriminations in Te1 to Te3 within two (Te1 and Te2) and three training days (Te3), respectively, and they needed between 91 [CL (66, 126)] and 174 [CL (126, 241)] trials to reach the learning criterion, with no statistically significant differences between the groups. In Te4, in contrast, the animals took 403 [Group A; CL (291, 557)] and 385 [Group B; CL (286, 519)] trials, respectively, to learn the task. The lack of spontaneous preferences for the photo of the familiar conspecific in the pretests of Te1 to Te3 in Group A, as well as the lack of differences in the number of trials to learn the discriminations between both groups, do not at first glance suggest that the goats established a correspondence between real conspecifics and their 2D representations. However, the higher number of trials in Te4 suggests that both groups formed the learning rule of choosing either the known (Group A) or the unknown goat (Group B) over the course of Te1 to Te3 and then failed after the rule was reversed, providing evidence that goats can associate 2D photos of conspecifics with real animals.
Project description:Recent evidence suggests that while reflectance information (including color) may be more diagnostic for familiar face recognition, shape may be more diagnostic for unfamiliar face identity processing. Moreover, event-related potential (ERP) findings suggest an earlier onset for neural processing of facial shape compared to reflectance. In the current study, we aimed to explore specifically the roles of facial shape and color in a familiarity decision task using pre-experimentally familiar (famous) and unfamiliar faces that were caricatured either in shape-only, color-only, or both (full; shape + color) by 15%, 30%, or 45%. We recorded accuracies, mean reaction times, and face-sensitive ERPs. Performance data revealed that shape caricaturing facilitated identity processing for unfamiliar faces only. In the ERP data, such effects of shape caricaturing emerged earlier than those of color caricaturing. Unsurprisingly, ERP effects were accentuated for larger levels of caricaturing. Overall, our findings corroborate the importance of shape for identity processing of unfamiliar faces and demonstrate an earlier onset of neural processing for facial shape compared to color.
Project description:Personally familiar faces are processed more robustly and efficiently than unfamiliar faces. The human face processing system comprises a core system that analyzes the visual appearance of faces and an extended system for the retrieval of person-knowledge and other nonvisual information. We applied multivariate pattern analysis to fMRI data to investigate aspects of familiarity that are shared by all familiar identities and information that distinguishes specific face identities from each other. Both identity-independent familiarity information and face identity could be decoded in an overlapping set of areas in the core and extended systems. Representational similarity analysis revealed a clear distinction between the two systems and a subdivision of the core system into ventral, dorsal and anterior components. This study provides evidence that activity in the extended system carries information about both individual identities and personal familiarity, while clarifying and extending the organization of the core system for face perception.
Project description:Using a priming paradigm, we investigate whether socially important faces are processed preferentially compared to other familiar and unfamiliar faces, and whether any such effects are affected by changes in viewpoint. Participants were primed with frontal images of personally familiar, famous or unfamiliar faces, and responded to target images of congruent or incongruent identity, presented in frontal, three quarter or profile views. We report that participants responded significantly faster to socially important faces (a friend's face) compared to other highly familiar (famous) faces or unfamiliar faces. Crucially, responses to famous and unfamiliar faces did not differ. This suggests that, when presented in the context of a socially important stimulus, socially unimportant familiar faces (famous faces) are treated in a similar manner to unfamiliar faces. This effect was not tied to viewpoint, and priming did not affect socially important face processing differently to other faces.
Project description:In the face of a potential threat to his or her child, a parent's caregiving system becomes activated, motivating the parent to protect and care for the child. However, the neural correlates of these responses are not yet well understood. The current study was a pilot study to investigate the processing of subliminally presented threatening primes and their effects on neural responses to familiar and unfamiliar children's faces. In addition, we studied potential moderating effects of empathy and childhood experiences of love-withdrawal. A total of 45 students participated in an fMRI experiment in which they were shown pictures of familiar children (pictures morphed to resemble the participant like an own child would) and unfamiliar children preceded by neutral and threatening primes. Participants completed a modified version of the Children's Report of Parental Behavior Inventory to measure parental love withdrawal, and the Empathic Concern scale of the Interpersonal Reactivity Index to measure affective empathy. Contrary to our expectations, we did not find evidence for subliminal priming effects. However, we did find enhanced activity in the right inferior frontal gyrus (IFG; involved in self-referential processing) and in face processing areas (infero-lateral occipital cortex and fusiform areas) in response to the familiar child, indicating preferential processing of these faces. Effects of familiarity in face processing areas were larger for participants reporting more love withdrawal, suggesting enhanced attention to and processing of these highly attachment relevant stimuli. Unfamiliar faces elicited enhanced activity in bilateral superior temporal gyrus (STG) and other regions associated with theory of mind (ToM), which may indicate more effortful ToM processing of these faces. We discuss the potential difference between a familiarity and a caregiving effect triggered by the morphed faces, and emphasize the need for replication in parents with pictures of their "real" own child.
Project description:Many species use facial features to identify conspecifics, which is necessary to navigate a complex social environment. The fundamental mechanisms underlying face processing are starting to be well understood in a variety of primate species. However, most studies focus on a limited subset of species tested with unfamiliar faces. As well as limiting our understanding of how widely distributed across species these skills are, this also limits our understanding of how primates process faces of individuals they know, and whether social factors (e.g. dominance and social bonds) influence how readily they recognize others. In this study, socially housed crested macaques voluntarily participated in a series of computerized matching-to-sample tasks investigating their ability to discriminate (i) unfamiliar individuals and (ii) members of their own social group. The macaques performed above chance on all tasks. Familiar faces were not easier to discriminate than unfamiliar faces. However, the subjects were better at discriminating higher ranking familiar individuals, but not unfamiliar ones. This suggests that our subjects applied their knowledge of their dominance hierarchies to the pictorial representation of their group mates. Faces of high-ranking individuals garner more social attention, and therefore might be more deeply encoded than other individuals. Our results extend the study of face recognition to a novel species, and consequently provide valuable data for future comparative studies.
Project description:We investigated the ability of humans to optimize face recognition performance through rapid learning of individual relevant features. We created artificial faces with discriminating visual information heavily concentrated in single features (nose, eyes, chin or mouth). In each of 2500 learning blocks a feature was randomly selected and retained over the course of four trials, during which observers identified randomly sampled, noisy face images. Observers learned the discriminating feature through indirect feedback, leading to large performance gains. Performance was compared to a learning Bayesian ideal observer, resulting in unexpectedly high learning compared to previous studies with simpler stimuli. We explore various explanations and conclude that the higher learning measured with faces cannot be driven by adaptive eye movement strategies but can be mostly accounted for by suboptimalities in human face discrimination when observers are uncertain about the discriminating feature. We show that an initial bias of humans to use specific features to perform the task even though they are informed that each of four features is equally likely to be the discriminatory feature would lead to seemingly supra-optimal learning. We also examine the possibility of inefficient human integration of visual information across the spatially distributed facial features. Together, the results suggest that humans can show large performance improvement effects in discriminating faces as they learn to identify the feature containing the discriminatory information.
Project description:Mice, both wild and laboratory strains, emit ultrasound to communicate. The sex differences between male to female (male-female) and female to female (female-female) ultrasonic vocalizations (USVs) have been discussed for decades. In the present study, we compared the number of USVs emitted to familiar and unfamiliar females by both males (male-female USVs) and females (female-female USVs). We found that females vocalized more to unfamiliar than to familiar females. By contrast, males exhibited more USVs to familiar partners. This sexually dimorphic behaviour suggests that mice change their vocal behaviour in response to the social context, and their perception of the context is based on social cognition and memory. In addition, because males vocalized more to familiar females, USVs appear to be not only a response to novel objects or individuals, but also a social response.