Project description:Perampanel is a selective, noncompetitive AMPA receptor antagonist that has recently been approved for treating localization-related epilepsy. This article reviews the pharmacology, clinical development, efficacy, and safety/tolerability of perampanel.
Project description:Epileptic seizures are frequent in patients with glioblastoma, and anticonvulsive treatment is often necessary. While clinical guidelines recommend all approved anticonvulsants, so far it is still unclear which of the available drugs is the best therapeutic option for treating glioma-associated seizures, also in view of possible anti-tumorigenic effects. In our study, we employed four patient-derived low-passage cell lines of glioblastoma and three cell lines of brain metastases, and challenged these cultures with four anticonvulsants with different mechanisms of action: levetiracetam, valproic acid, carbamazepine and perampanel. Cell proliferation was determined by bromodeoxyuridine incorporation. To further analyze the effects of perampanel, apoptosis induction was measured by caspase 3/7 activation. Glutamate release was quantified and glucose uptake was determined using 18F-fluorodeoxyglucose. Real-time polymerase chain reaction was employed to assess the expression of genes associated with glutamate release and uptake in brain tumor cells. Of the four anticonvulsants, only perampanel showed systematic inhibitory effects on cell proliferation, whereas all other anticonvulsants failed to inhibit glioma and metastasis cell growth in vitro. Metastasis cells were much more resistant to perampanel than glioblastoma cell lines. Glucose uptake was attenuated in all glioblastoma cells after perampanel exposure, whereas cell death via apoptosis was not induced. Extracellular glutamate levels were found to be significantly higher in glioblastoma cell lines as compared to metastasis cell lines, but could be reduced by perampanel exposure. Incubation with perampanel up-regulated glutamine synthetase expression in glioblastoma cells, whereas treatment with valproic acid and levetiracetam downregulated excitatory amino acid transporter-2 expression. Overall, our data suggest that perampanel acts as an anticonvulsive drug and additionally mediated anti-tumorigenic effects.
Project description:Perampanel, a selective, noncompetitive ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor antagonist, is indicated for adjunctive treatment of partial seizures in patients ?12 years based on three phase III clinical studies. The perampanel U.S. Prescribing Information includes a boxed warning for serious psychiatric and behavioral adverse reactions. To provide context for this warning, detail on psychiatric and behavioral safety data from perampanel clinical studies is presented.An analysis of pooled safety data from three phase III studies in patients with partial seizures is presented. Data from phase I and phase II studies in patients with and without epilepsy were also analyzed. Psychiatric and behavioral treatment-emergent adverse events (TEAEs) were evaluated according to Medical Dictionary for Regulatory Activities (MedDRA) terms, using "narrow" and "narrow-and-broad" standardized MedDRA queries (SMQs) for TEAEs suggestive of hostility/aggression.From the three phase III partial-seizure studies, the overall rate of psychiatric TEAEs was higher in the 8 mg (17.2%) and 12 mg (22.4%) perampanel groups versus placebo (12.4%). In the "narrow" SMQ, hostility/aggression TEAEs were observed in 2.8% for 8 mg and 6.3% for 12 mg perampanel groups, versus 0.7% of placebo patients. "Narrow-and-broad" SMQs for hostility/aggression TEAE rates were 12.3% for 8 mg and 20.4% for 12 mg perampanel groups, versus 5.7% for placebo; rates for events resulting in discontinuation were perampanel = 1.6% versus placebo = 0.7%. For events reported as serious AEs (SAEs), rates were perampanel = 0.7% versus placebo = 0.2%. In nonepilepsy patients, psychiatric TEAEs were similar between patients receiving perampanel and placebo. In phase I subjects/volunteers, all psychiatric TEAEs were mild or moderate. These analyses suggest that psychiatric adverse effects are associated with use of perampanel.Patients and caregivers should be counseled regarding the potential risk of psychiatric and behavioral events with perampanel in patients with partial seizures; patients should be monitored for these events during treatment, especially during titration and at higher doses.
Project description:Both TDP-43 pathology and failure of RNA editing of AMPA receptor subunit GluA2, are etiology-linked molecular abnormalities that concomitantly occur in the motor neurons of the majority of patients with amyotrophic lateral sclerosis (ALS). AR2 mice, in which an RNA editing enzyme adenosine deaminase acting on RNA 2 (ADAR2) is conditionally knocked out in the motor neurons, exhibit a progressive ALS phenotype with TDP-43 pathology in the motor neurons through a Ca(2+)-permeable AMPA receptor-mediated mechanism. Therefore, amelioration of the increased Ca(2+) influx by AMPA receptor antagonists may be a potential ALS therapy. Here, we showed that orally administered perampanel, a selective, non-competitive AMPA receptor antagonist significantly prevented the progression of the ALS phenotype and normalized the TDP-43 pathology-associated death of motor neurons in the AR2 mice. Given that perampanel is an approved anti-epileptic drug, perampanel is a potential candidate ALS drug worthy of a clinical trial.
Project description:IntroductionPerampanel is a highly selective and noncompetitive α-amino-3 -hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist, which has been used as an orally administered antiepileptic drug in more than 55 countries. Recently, perampanel was shown to exert neuroprotective effects in hemorrhagic and ischemic stroke models via regulating blood-brain barrier (BBB) function.AimHere, the protective effects of perampanel were investigated in an in vitro neurovascular unit (NVU) system established using a triple cell co-culture model (neurons, astrocytes, and brain microvascular endothelial cells) and in an in vivo traumatic brain injury (TBI) model.ResultsNeurons in the NVU system exhibit a more mature morphological phenotype compared with neurons cultured alone, and the co-culture system mimicked an impermeable barrier in vitro. Perampanel protects the NVU system against traumatic and excitotoxic injury, as evidenced by reduced lactate dehydrogenase (LDH) release and apoptotic rate. Treatment with perampanel attenuated lipid peroxidation and expression of inflammatory cytokines. In addition, perampanel increased Sirt3 protein expression, enhanced the activities of mitochondrial enzyme IDH2 and SOD2, and preserved BBB function in vitro. Knockdown of Sirt3 using specific siRNA (Si-Sirt3) partially reserved the effects of perampanel on neuronal injury and BBB function. Treatment with perampanel in vivo attenuated brain edema, preserved neurological function, inhibited apoptosis and microglia activation after TBI. Furthermore, perampanel increased the expression of Sirt3 and preserved BBB function after TBI. The effect of perampanel on BBB function and brain edema was abolished by knockdown of Sirt3 in vivo.ConclusionOur results indicate that the noncompetitive AMPAR antagonist perampanel protects the NVU system and reduces brain damage after TBI via activating the Sirt3 cascades.
Project description:To determine whether AMPA receptor (AMPAR) antagonist NBQX can prevent early mammalian target of rapamycin (mTOR) pathway activation and long-term sequelae following neonatal seizures in rats, including later-life spontaneous recurrent seizures, CA3 mossy fiber sprouting, and autistic-like social deficits.Long-Evans rats experienced hypoxia-induced neonatal seizures (HS) at postnatal day (P)10. NBQX (20 mg/kg) was administered immediately following HS (every 12 h × 4 doses). Twelve hours post-HS, we assessed mTOR activation marker phosphorylated p70-S6 kinase (p-p70S6K) in hippocampus and cortex of vehicle (HS + V) or NBQX-treated post-HS rats (HS + N) versus littermate controls (C + V). Spontaneous seizure activity was compared between groups by epidural cortical electroencephalography (EEG) at P70-100. Aberrant mossy fiber sprouting was measured using Timm staining. Finally, we assessed behavior between P30 and P38.Postseizure NBQX treatment significantly attenuated seizure-induced increases in p-p70S6K in the hippocampus (p < 0.01) and cortex (p < 0.001). Although spontaneous recurrent seizures increased in adulthood in HS + V rats compared to controls (3.22 ± 1 seizures/h; p = 0.03), NBQX significantly attenuated later-life seizures (0.14 ± 0.1 seizures/h; p = 0.046). HS + N rats showed less aberrant mossy fiber sprouting (115 ± 8.0%) than vehicle-treated post-HS rats (174 ± 10%, p = 0.004), compared to controls (normalized to 100%). Finally, NBQX treatment prevented alterations in later-life social behavior; post-HS rats showed significantly decreased preference for a novel over a familiar rat (71.0 ± 12 s) compared to controls (99.0 ± 15.6 s; p < 0.01), whereas HS + N rats showed social novelty preference similar to controls (114.3 ± 14.1 s).Brief NBQX administration during the 48 h postseizure in P10 Long-Evans rats suppresses transient mTOR pathway activation and attenuates spontaneous recurrent seizures, social preference deficits, and mossy fiber sprouting observed in vehicle-treated adult rats after early life seizures. These results suggest that acute AMPAR antagonist treatment during the latent period immediately following neonatal HS can modify seizure-induced activation of mTOR, reduce the frequency of later-life seizures, and protect against CA3 mossy fiber sprouting and autistic-like social deficits.
Project description:Postsynaptic AMPA/glutamate receptors, essential for neuronal excitability, are important targets for anticonvulsant therapy. This single channel study of the selective noncompetitive AMPA receptor antagonist, perampanel, was performed on homotetrameric GluA3 receptor-channels that open in a stepwise manner to four distinct conductance levels through independent subunit activation. Previous structural studies show that perampanel binds to four sites located within the extracellular/transmembrane boundary of closed AMPA receptor-channel subunits. We found that channels exposed to 1 or 2 ?M perampanel opened mainly to the two lower conductance levels in a dose-dependent manner. Comparison of the single channel results in the structures of the full length AMPA receptor in the closed state bound to perampanel, and the open state provide insights into the mechanism of allosteric reduction of AMPA-receptor-mediated excitation in epilepsy.
Project description:The only treatment of patients with acute ischemic stroke is thrombolytic therapy, which benefits only a fraction of stroke patients. Both human and experimental studies indicate that ischemic stroke involves secondary inflammation that significantly contributes to the outcome after ischemic insult. Minocycline is a semisynthetic second-generation tetracycline that exerts antiinflammatory effects that are completely separate from its antimicrobial action. Because tetracycline treatment is clinically well tolerated, we investigated whether minocycline protects against focal brain ischemia with a wide therapeutic window. Using a rat model of transient middle cerebral artery occlusion, we show that daily treatment with minocycline reduces cortical infarction volume by 76 +/- 22% when the treatment is started 12 h before ischemia and by 63 +/- 35% when started even 4 h after the onset of ischemia. The treatment inhibits morphological activation of microglia in the area adjacent to the infarction, inhibits induction of IL-1beta-converting enzyme, and reduces cyclooxygenase-2 expression and prostaglandin E(2) production. Minocycline had no effect on astrogliosis or spreading depression, a wave of ionic transients thought to contribute to enlargement of cortical infarction. Treatment with minocycline may act directly on brain cells, because cultured primary neurons were also salvaged from glutamate toxicity. Minocycline may represent a prototype of an antiinflammatory compound that provides protection against ischemic stroke and has a clinically relevant therapeutic window.
Project description:Its increasing incidence has led stroke to be the second leading cause of death worldwide. Despite significant advances in recanalization strategies, patients are still at risk for ischemia/reperfusion injuries in this pathophysiology, in which neuroinflammation is significantly involved. Research has shown that in the acute phase, neuroinflammatory cascades lead to apoptosis, disruption of the blood-brain barrier, cerebral edema, and hemorrhagic transformation, while in later stages, these pathways support tissue repair and functional recovery. The present review discusses the various cell types and the mechanisms through which neuroinflammation contributes to parenchymal injury and tissue repair, as well as therapeutic attempts made in vitro, in animal experiments, and in clinical trials which target neuroinflammation, highlighting future therapeutic perspectives.
Project description:Previous studies indicate that the Sigma-1 ligand 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP) protects the brain from ischemia. Less clear is whether protection is mediated by agonism or antagonism of the Sigma-1 receptor, and whether drugs already in use for other indications and that interact with the Sigma-1 receptor might also prevent oxidative damage due to conditions such as cerebral ischemic stroke. The antipsychotic drug haloperidol is an antagonist of Sigma-1 receptors and in this study it potently protects against oxidative stress-related cell death in vitro at low concentrations. The protective potency of haloperidol and a number of other butyrophenone compounds positively correlate with their affinity for a cloned Sigma-1 receptor, and the protection is mimicked by a Sigma-1 receptor-selective antagonist (BD1063), but not an agonist (PRE-084). In vivo, an acute low dose (0.05 mg/kg s.c.) of haloperidol reduces by half the ischemic lesion volume induced by a transient middle cerebral artery occlusion. These in vitro and in vivo pre-clinical results suggest that a low dose of acutely administered haloperidol might have a novel application as a protective agent against ischemic cerebral stroke and other types of brain injury with an ischemic component.