Project description:Next Generation Sequencing (NGS) using capture or amplicons strategies allows the detection of a large number of mutations increasing the rate of positive diagnosis for the patients. However, most of the detected mutations are Single Nucleotide Variants (SNVs) or small indels. Structural Variants (SVs) are often underdiagnosed in inherited genetic diseases, probably because few user-friendly tools are available for biologists or geneticists to identify them easily. We present here the diagnosis of two brothers presenting a demyelinating motor-sensitive neuropathy: a presumed homozygous c.5744_5745delAT in exon 10 of SACS gene was initially detected, while actually these patients were heterozygous for this mutation and harbored a large deletion of SACS exon 10 in the other allele. This hidden mutation has been detected thanks to the user-friendly CovCopCan software. We recommend to systematically use such a software to screen NGS data in order to detect SVs, such as Copy Number Variations, to improve diagnosis of the patients.
Project description:Despite expression of immunogenic polypeptides, tumors escape immune surveillance by engaging T cell checkpoint regulators and expanding Tregs, among other mechanisms. What orchestrates these controls is unknown. We report that free C3d, a fragment of the third component of complement, inside tumor cells - or associated with irradiated tumor cells and unattached to antigen - recruits, accelerates, and amplifies antitumor T cell responses, allowing immunity to reverse or even to prevent tumor growth. C3d enhances antitumor immunity independently of B cells, NK cells, or antibodies, but it does so by increasing tumor infiltrating CD8+ lymphocytes, by depleting Tregs, and by suppressing expression of programmed cell death protein 1 (PD-1) by T cells. These properties of C3d appear specific for the tumor and dependent on complement receptor 2, and they incur no obvious systemic toxicity. The heretofore unrecognized properties of free C3d suggest that protein might determine the effectiveness of immune surveillance and that increasing availability of the protein might prove advantageous in the treatment or prevention of cancer and premalignant conditions.
Project description:PurposePD-1/PD-L1 signaling promotes tumor growth while inhibiting effector cell-mediated antitumor immune responses. Here, we assessed the impact of single and dual blockade of PD-1/PD-L1, alone or in combination with lenalidomide, on accessory and immune cell function as well as multiple myeloma cell growth in the bone marrow (BM) milieu.Experimental designSurface expression of PD-1 on immune effector cells, and PD-L1 expression on CD138(+) multiple myeloma cells and myeloid-derived suppressor cells (MDSC) were determined in BM from newly diagnosed (ND) multiple myeloma and relapsed/refractory (RR) multiple myeloma versus healthy donor (HD). We defined the impact of single and dual blockade of PD-1/PD-L1, alone and with lenalidomide, on autologous anti-multiple myeloma immune response and tumor cell growth.ResultsBoth ND and RR patient multiple myeloma cells have increased PD-L1 mRNA and surface expression compared with HD. There is also a significant increase in PD-1 expression on effector cells in multiple myeloma. Importantly, PD-1/PD-L1 blockade abrogates BM stromal cell (BMSC)-induced multiple myeloma growth, and combined blockade of PD-1/PD-L1 with lenalidomide further inhibits BMSC-induced tumor growth. These effects are associated with induction of intracellular expression of IFNγ and granzyme B in effector cells. Importantly, PD-L1 expression in multiple myeloma is higher on MDSC than on antigen-presenting cells, and PD-1/PD-L1 blockade inhibits MDSC-mediated multiple myeloma growth. Finally, lenalidomide with PD-1/PD-L1 blockade inhibits MDSC-mediated immune suppression.ConclusionsOur data therefore demonstrate that checkpoint signaling plays an important role in providing the tumor-promoting, immune-suppressive microenvironment in multiple myeloma, and that PD-1/PD-L1 blockade induces anti-multiple myeloma immune response that can be enhanced by lenalidomide, providing the framework for clinical evaluation of combination therapy.
Project description:BackgroundTransforming growth factor beta (TGFβ) is well-recognized as an immunosuppressive player in the tumor microenvironment but also has a significant impact on cancer cell phenotypes. Loss of TGFβ signaling impairs DNA repair competency, which is described by a transcriptomic score, βAlt. Cancers with high βAlt have more genomic damage and are more responsive to genotoxic therapy. The growing appreciation that cancer DNA repair deficits are important determinants of immune response prompted us to investigate βAlt's association with response to immune checkpoint blockade (ICB). We predicted that high βAlt tumors would be infiltrated with lymphocytes because of DNA damage burden and hence responsive to ICB.MethodsWe analyzed public transcriptomic data from clinical trials and preclinical models using transcriptomic signatures of TGFβ targets, DNA repair genes, tumor educated immune cells and interferon. A high βAlt, immune poor mammary tumor derived transplant model resistant to programmed death ligand 1 (PD-L1) antibodies was studied using multispectral flow cytometry to interrogate the immune system.ResultsMetastatic bladder patients in IMvigor 210 who responded to ICB had significantly increased βAlt scores and experienced significantly longer overall survival compared to those with low βAlt scores (hazard ratio 0.62, P=0.011). Unexpectedly, 75% of high βAlt cancers were immune poor as defined by low expression of tumor educated immune cell and interferon signatures. The association of high βAlt with immune poor cancer was also evident in TCGA and preclinical cancer models. We used a high βAlt, immune poor cancer to test therapeutic strategies to overcome its inherent anti-PD-L1 resistance. Combination treatment with radiation and TGFβ inhibition were necessary for lymphocytic infiltration and activated NK cells were required for ICB response. Bioinformatic analysis identified high βAlt, immune poor B16 and CT26 preclinical models and paired biopsies of cancer patients that also demonstrated NK cell activation upon response to ICB.ConclusionsOur studies confirm βAlt as a biomarker that predicts response to ICB in immune poor cancers., which has implications for the development of therapeutic strategies to increase the number of cancer patients who will benefit from immunotherapy.
Project description:BackgroundCoronavirus disease 2019 (COVID-19) is likely to have significant implications for the cardiovascular care of patients. In most countries, containment has already started (on 17 March 2020 in France), and self-quarantine and social distancing are reducing viral contamination and saving lives. However, these considerations may only be the tip of the iceberg; most resources are dedicated to the struggle against COVID-19, and this unprecedented situation may compromise the management of patients admitted with cardiovascular conditions.AimWe aimed to assess the effect of COVID-19 containment measures on cardiovascular admissions in France.MethodsWe asked nine major cardiology centres to give us an overview of admissions to their nine intensive cardiac care units for acute myocardial infarction or acute heart failure, before and after containment measures.ResultsBefore containment (02-16 March 2020), the nine participating intensive cardiac care units admitted 4.8±1.6 patients per day, versus 2.6±1.5 after containment (17-22 March 2020) (rank-sum test P=0.0006).ConclusionsWe confirm here, for the first time, a dramatic drop in the number of cardiovascular admissions after the establishment of containment. Many hypotheses might explain this phenomenon, but we feel it is time raise the alarm about the risk for patients presenting with acute cardiovascular disease, who may suffer from lack of attention, leading to severe consequences (an increase in the number of ambulatory myocardial infarctions, mechanical complications of myocardial infarction leading to an increase in the number of cardiac arrests, unexplained deaths, heart failure, etc.). Similar consequences can be feared for all acute situations, beyond the cardiovascular disease setting.
Project description:Abstract This is a protocol for a Cochrane Review (Intervention). The objectives are as follows: To assess the effectiveness and safety of anti‐PD‐1 and anti‐PD‐L1 antibodies in the treatment of adults with diffuse glioma.
Project description:Chemotherapy, in combination with immune checkpoint blockade (ICB) targeting to programmed death-1 (PD-1) or its ligand PD-L1, is one of the first-line treatments for patients with advanced non-small-cell lung cancer (NSCLC). However, a large proportion of patients, especially those with PD-L1 negative tumors, do not benefit from this treatment. This may be due to the existence of multiple immunosuppressive mechanisms other than the PD-1/PD-L1 axis. Human leukocyte antigen-G (HLA-G) has been identified as an immune checkpoint protein (ICP) and a neoexpressed tumor-associated antigen (TAA) in a large proportion of solid tumors. In this study, we evaluated the induction of HLA-G as well as PD-L1 using sublethal doses of chemotherapeutics including pemetrexed in different NSCLC cell lines. Except for gefitinib, most of the chemotherapeutic agents enhanced HLA-G and PD-L1 expression in a dose-dependent manner, whereas pemetrexed and carboplatin treatments showed the most consistent upregulation of PD-L1 and HLA-G in each cell line. In addition to protein levels, a novel finding of this study is that pemetrexed enhanced the glycosylation of HLA-G and PD-L1. Pemetrexed potentiated the cytotoxicity of cytotoxic T lymphocytes (CTLs) to treat NSCLC. Both in vitro and in vivo experiments revealed that CTL-mediated cytotoxicity was most pronounced when both anti-PD-L1 and anti-HLA-G ICBs were combined with pemetrexed treatment. In conclusion, anti-HLA-G could be an intervention strategy in addition to the anti-PD-1/PD-L1 pathway for NSCLC. Moreover, dual targeting of PD-L1 and HLA-G combined with pemetrexed might have a better extent of CTL-based immunotherapy.
Project description:Response resistance to the immune checkpoint blockade (ICB) immunotherapy remains a major clinical challenge that may be overcome through the rational combination of ICB and specific targeted therapeutics. One emerging combination strategy is based on sensitizing ICB-refractory tumors with antagonists of 90kD heat shock protein (Hsp90) that target all four isoforms. However, pan-Hsp90 inhibitors are limited by the modest efficacy, on-target and off-tumor toxicities, and induction of the heat shock response (HSR) that overrides the effect of Hsp90 inhibition. Recently, we developed Hsp90β-selective inhibitors that were cytotoxic to cancer cells but did not induce HSR in vitro. Here, we report that the Hsp90β inhibitor NDNB1182 downregulated CDK4 (an Hsp90β-dependent client protein) and induced the expression of endogenous retroviral elements and interferon-stimulated genes. In syngeneic mouse models of prostate cancer and breast cancer, NDNB1182 significantly augmented the efficacy of ICB therapy. Furthermore, NDNB1182 showed superior tolerability to the pan-Hsp90 inhibitor Ganetespib in mice. Our findings provide evidence that Hsp90β inhibition is a potentially effective and safe regimen to combine with ICB to treat immunotherapy-refractory solid tumors.
Project description:One of the primary mechanisms of tumor cell immune evasion is the loss of antigenicity, which arises due to lack of immunogenic tumor antigens as well as dysregulation of the antigen processing machinery. In a screen for small-molecule compounds from herbal medicine that potentiate T cell-mediated cytotoxicity, we identified atractylenolide I (ATT-I), which substantially promotes tumor antigen presentation of both human and mouse colorectal cancer (CRC) cells and thereby enhances the cytotoxic response of CD8+ T cells. Cellular thermal shift assay (CETSA) with multiplexed quantitative mass spectrometry identified the proteasome 26S subunit non-ATPase 4 (PSMD4), an essential component of the immunoproteasome complex, as a primary target protein of ATT-I. Binding of ATT-I with PSMD4 augments the antigen-processing activity of immunoproteasome, leading to enhanced MHC-I-mediated antigen presentation on cancer cells. In syngeneic mouse CRC models and human patient-derived CRC organoid models, ATT-I treatment promotes the cytotoxicity of CD8+ T cells and thus profoundly enhances the efficacy of immune checkpoint blockade therapy. Collectively, we show here that targeting the function of immunoproteasome with ATT-I promotes tumor antigen presentation and empowers T cell cytotoxicity, thus elevating the tumor response to immunotherapy.
Project description:BackgroundAlthough immune checkpoint inhibitor (ICI)-based therapy is advantageous for patients with advanced melanoma, resistance and relapse are frequent. Thus, it is crucial to identify effective drug combinations and develop new therapies for the treatment of melanoma. SGN1, a genetically modified Salmonella typhimurium species that causes the targeted deprivation of methionine in tumor tissues, is currently under investigation in clinical trials. However, the inhibitory effect of SGN1 on melanoma and the benefits of SGN1 in combination with ICIs remain largely unexplored. Therefore, this study aims to investigate the antitumor potential of SGN1, and its ability to enhance the efficacy of antibody-based programmed cell death-ligand 1 (PD-L1) inhibitors in the treatment of murine melanoma.MethodsThe antitumor activity of SGN1 and the effect of SGN1 on the efficacy of PD-L1 inhibitors was studied through murine melanoma models. Further, The Cancer Genome Atlas-melanoma cohort was clustered using ConsensusClusterPlus based on the methionine deprivation-related genes, and immune characterization was performed using xCell, Microenvironment Cell Populations-counter, Estimation of Stromal and Immune cells in MAlignant Tumor tissues using Expression data, and immunophenoscore (IPS) analyses. The messenger RNA data on programmed death-1 (PD-1) immunotherapy response were obtained from the Gene Expression Omnibus database. Gene Set Enrichment Analysis of methionine deprivation-up gene set was performed to determine the differences between pretreatment responders and non-responders.ResultsThis study showed that both, the intratumoral and the intravenous administration of SGN1 in subcutaneous B16-F10 melanomas, suppress tumor growth, which was associated with an activated CD8+T-cell response in the tumor microenvironment. Combination therapy of SGN1 with systemic anti-PD-L1 therapy resulted in better antitumor activity than the individual monotherapies, respectively, and the high therapeutic efficacy of the combination was associated with an increase in the systemic level of tumor-specific CD8+ T cells. Two clusters consisting of methionine deprivation-related genes were identified. Patients in cluster 2 had higher expression of methionine_deprivation_up genes, better clinical outcomes, and higher immune infiltration levels compared with patients in cluster 1. Western blot, IPS analysis, and immunotherapy cohort study revealed that methionine deficiency may show a better response to ICI therapy CONCLUSIONS:: This study reports Salmonella-based SGN1 as a potent anticancer agent against melanoma, and lays the groundwork for the potential synergistic effect of ICIs and SGN1 brought about by improving the immune microenvironment in melanomas.