Unknown

Dataset Information

0

Quantifying Chemical Structure and Machine-Learned Atomic Energies in Amorphous and Liquid Silicon.


ABSTRACT: Amorphous materials are being described by increasingly powerful computer simulations, but new approaches are still needed to fully understand their intricate atomic structures. Here, we show how machine-learning-based techniques can give new, quantitative chemical insight into the atomic-scale structure of amorphous silicon (a-Si). We combine a quantitative description of the nearest- and next-nearest-neighbor structure with a quantitative description of local stability. The analysis is applied to an ensemble of a-Si networks in which we tailor the degree of ordering by varying the quench rates down to 1010 ?K?s-1 . Our approach associates coordination defects in a-Si with distinct stability regions and it has also been applied to liquid Si, where it traces a clear-cut transition in local energies during vitrification. The method is straightforward and inexpensive to apply, and therefore expected to have more general significance for developing a quantitative understanding of liquid and amorphous states of matter.

SUBMITTER: Bernstein N 

PROVIDER: S-EPMC6563111 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Quantifying Chemical Structure and Machine-Learned Atomic Energies in Amorphous and Liquid Silicon.

Bernstein Noam N   Bhattarai Bishal B   Csányi Gábor G   Drabold David A DA   Elliott Stephen R SR   Deringer Volker L VL  

Angewandte Chemie (International ed. in English) 20190417 21


Amorphous materials are being described by increasingly powerful computer simulations, but new approaches are still needed to fully understand their intricate atomic structures. Here, we show how machine-learning-based techniques can give new, quantitative chemical insight into the atomic-scale structure of amorphous silicon (a-Si). We combine a quantitative description of the nearest- and next-nearest-neighbor structure with a quantitative description of local stability. The analysis is applied  ...[more]

Similar Datasets

| S-EPMC9710228 | biostudies-literature
| S-EPMC4869258 | biostudies-literature
| S-EPMC10908788 | biostudies-literature
| S-EPMC9052749 | biostudies-literature
| S-EPMC6164960 | biostudies-literature
| S-EPMC5706237 | biostudies-literature
| S-EPMC10447443 | biostudies-literature
| S-EPMC7153506 | biostudies-literature
| S-EPMC9063738 | biostudies-literature
| S-EPMC6240814 | biostudies-other