Unknown

Dataset Information

0

Hydrogen-Bond Strength of CC and GG Pairs Determined by Steric Repulsion: Electrostatics and Charge Transfer Overruled.


ABSTRACT: Theoretical and experimental studies have elucidated the bonding mechanism in hydrogen bonds as an electrostatic interaction, which also exhibits considerable stabilization by charge transfer, polarization, and dispersion interactions. Therefore, these components have been used to rationalize the differences in strength of hydrogen-bonded systems. A completely new viewpoint is presented, in which the Pauli (steric) repulsion controls the mechanism of hydrogen bonding. Quantum chemical computations on the mismatched DNA base pairs CC and GG (C=cytosine, G=guanine) show that the enhanced stabilization and shorter distance of GG is determined entirely by the difference in the Pauli repulsion, which is significantly less repulsive for GG than for CC. This is the first time that evidence is presented for the Pauli repulsion as decisive factor in relative hydrogen-bond strengths and lengths.

SUBMITTER: van der Lubbe SCC 

PROVIDER: S-EPMC6563699 | biostudies-literature | 2017 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hydrogen-Bond Strength of CC and GG Pairs Determined by Steric Repulsion: Electrostatics and Charge Transfer Overruled.

van der Lubbe Stephanie C C SCC   Fonseca Guerra Célia C  

Chemistry (Weinheim an der Bergstrasse, Germany) 20170601 43


Theoretical and experimental studies have elucidated the bonding mechanism in hydrogen bonds as an electrostatic interaction, which also exhibits considerable stabilization by charge transfer, polarization, and dispersion interactions. Therefore, these components have been used to rationalize the differences in strength of hydrogen-bonded systems. A completely new viewpoint is presented, in which the Pauli (steric) repulsion controls the mechanism of hydrogen bonding. Quantum chemical computatio  ...[more]

Similar Datasets

| S-EPMC4306500 | biostudies-literature
| S-EPMC9299809 | biostudies-literature
| S-EPMC9401605 | biostudies-literature
| S-EPMC5634604 | biostudies-literature
| S-EPMC3557810 | biostudies-literature
| S-EPMC11257561 | biostudies-literature
| S-EPMC4667241 | biostudies-literature
| S-EPMC9070093 | biostudies-literature
| S-EPMC7494863 | biostudies-literature
| S-EPMC3912530 | biostudies-literature