Unknown

Dataset Information

0

Ultra-fast force-clamp spectroscopy data on the interaction between skeletal muscle myosin and actin.


ABSTRACT: Ultrafast force-clamp spectroscopy is a single molecule technique based on laser tweezers with sub-millisecond and sub-nanometer resolution. The technique has been successfully applied to investigate the rapid conformational changes that occur when a myosin II motor from skeletal muscle interacts with an actin filament. Here, we share data on the kinetics of such interaction and experimental records collected under different forces [1]. The data can be valuable for researchers interested in the mechanosensitive properties of myosin II, both from an experimental and modeling point of view. The data is related to the research article "ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke" [2].

SUBMITTER: Maffei M 

PROVIDER: S-EPMC6565606 | biostudies-literature | 2019 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ultra-fast force-clamp spectroscopy data on the interaction between skeletal muscle myosin and actin.

Maffei Manuela M   Beneventi Diego D   Canepari Monica M   Bottinelli Roberto R   Pavone Francesco Saverio FS   Capitanio Marco M  

Data in brief 20190523


Ultrafast force-clamp spectroscopy is a single molecule technique based on laser tweezers with sub-millisecond and sub-nanometer resolution. The technique has been successfully applied to investigate the rapid conformational changes that occur when a myosin II motor from skeletal muscle interacts with an actin filament. Here, we share data on the kinetics of such interaction and experimental records collected under different forces [1]. The data can be valuable for researchers interested in the  ...[more]

Similar Datasets

2020-11-30 | GSE160827 | GEO
| S-EPMC1324983 | biostudies-literature
2021-04-09 | PXD022316 | Pride
| PRJNA674604 | ENA
| S-EPMC3577798 | biostudies-literature
| S-EPMC1138102 | biostudies-other
| S-EPMC6887992 | biostudies-literature
| S-EPMC9662813 | biostudies-literature
| S-EPMC6546592 | biostudies-literature
| S-EPMC3084075 | biostudies-literature