Unknown

Dataset Information

0

Dihydromyricetin and Salvianolic acid B inhibit alpha-synuclein aggregation and enhance chaperone-mediated autophagy.


ABSTRACT:

Background

Progressive accumulation of α-synuclein is a key step in the pathological development of Parkinson's disease. Impaired protein degradation and increased levels of α-synuclein may trigger a pathological aggregation in vitro and in vivo. The chaperone-mediated autophagy (CMA) pathway is involved in the intracellular degradation processes of α-synuclein. Dysfunction of the CMA pathway impairs α-synuclein degradation and causes cytotoxicity.

Results

In the present study, we investigated the effects on the CMA pathway and α-synuclein aggregation using bioactive ingredients (Dihydromyricetin (DHM) and Salvianolic acid B (Sal B)) extracted from natural medicinal plants. In both cell-free and cellular models of α-synuclein aggregation, after administration of DHM and Sal B, we observed significant inhibition of α-synuclein accumulation and aggregation. Cells were co-transfected with a C-terminal modified α-synuclein (SynT) and synphilin-1, and then treated with DHM (10 μM) and Sal B (50 μM) 16 hours after transfection; levels of α-synuclein aggregation decreased significantly (68% for DHM and 75% for Sal B). Concomitantly, we detected increased levels of LAMP-1 (a marker of lysosomal homeostasis) and LAMP-2A (a key marker of CMA). Immunofluorescence analyses showed increased colocalization between LAMP-1 and LAMP-2A with α-synuclein inclusions after treatment with DHM and Sal B. We also found increased levels of LAMP-1 and LAMP-2A both in vitro and in vivo, along with decreased levels of α-synuclein. Moreover, DHM and Sal B treatments exhibited anti-inflammatory activities, preventing astroglia- and microglia-mediated neuroinflammation in BAC-α-syn-GFP transgenic mice.

Conclusions

Our data indicate that DHM and Sal B are effective in modulating α-synuclein accumulation and aggregate formation and augmenting activation of CMA, holding potential for the treatment of Parkinson's disease.

SUBMITTER: Wu JZ 

PROVIDER: S-EPMC6570948 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5623690 | biostudies-literature
| S-EPMC2157565 | biostudies-literature
| S-EPMC8504378 | biostudies-literature
| S-EPMC3352979 | biostudies-other
| S-EPMC8072481 | biostudies-literature
| S-EPMC3378419 | biostudies-literature
| S-EPMC8707649 | biostudies-literature
2022-03-16 | GSE189202 | GEO
| S-EPMC9434619 | biostudies-literature
| S-EPMC8946620 | biostudies-literature