Unknown

Dataset Information

0

A neural network protocol for electronic excitations of N-methylacetamide.


ABSTRACT: UV absorption is widely used for characterizing proteins structures. The mapping of UV spectra to atomic structure of proteins relies on expensive theoretical simulations, circumventing the heavy computational cost which involves repeated quantum-mechanical simulations of excited-state properties of many fluctuating protein geometries, which has been a long-time challenge. Here we show that a neural network machine-learning technique can predict electronic absorption spectra of N-methylacetamide (NMA), which is a widely used model system for the peptide bond. Using ground-state geometric parameters and charge information as descriptors, we employed a neural network to predict transition energies, ground-state, and transition dipole moments of many molecular-dynamics conformations at different temperatures, in agreement with time-dependent density-functional theory calculations. The neural network simulations are nearly 3,000× faster than comparable quantum calculations. Machine learning should provide a cost-effective tool for simulating optical properties of proteins.

SUBMITTER: Ye S 

PROVIDER: S-EPMC6575560 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

A neural network protocol for electronic excitations of <i>N</i>-methylacetamide.

Ye Sheng S   Hu Wei W   Li Xin X   Zhang Jinxiao J   Zhong Kai K   Zhang Guozhen G   Luo Yi Y   Mukamel Shaul S   Jiang Jun J  

Proceedings of the National Academy of Sciences of the United States of America 20190530 24


UV absorption is widely used for characterizing proteins structures. The mapping of UV spectra to atomic structure of proteins relies on expensive theoretical simulations, circumventing the heavy computational cost which involves repeated quantum-mechanical simulations of excited-state properties of many fluctuating protein geometries, which has been a long-time challenge. Here we show that a neural network machine-learning technique can predict electronic absorption spectra of <i>N</i>-methylac  ...[more]

Similar Datasets

| S-EPMC7217823 | biostudies-literature
| S-EPMC7596089 | biostudies-literature
| S-EPMC9068799 | biostudies-literature
| S-EPMC3929940 | biostudies-literature
| 2443187 | ecrin-mdr-crc
| S-EPMC5469805 | biostudies-other
| S-EPMC11364507 | biostudies-literature
| S-EPMC6205815 | biostudies-literature
| S-EPMC6028151 | biostudies-literature
| S-EPMC8358476 | biostudies-literature