Unknown

Dataset Information

0

Hydroxyl Radicals in E-Cigarette Vapor and E-Vapor Oxidative Potentials under Different Vaping Patterns.


ABSTRACT: Available studies, while limited in number, suggest that e-cigarette vaping induces oxidative stress, with one potential mechanism being the direct formation of reactive oxygen species (ROS) in e-vapor. In the present studies, we measured the formation of hydroxyl radical (•OH), the most destructive ROS, in e-vapor under a range of vaping patterns (i.e., power settings, solvent concentrations, flavorings). Study results show that increased power output and puff volume correspond with the formation of significantly higher amounts of •OH in e-vapor because of elevated coil temperature and oxygen supply. Vegetable glycerin (VG) e-liquids generated higher •OH levels than propylene glycol (PG) e-liquids, as did flavored e-liquids relative to nonflavored e-liquids. E-vapor in combination with ascorbic acid, which is an abundant biological molecule in human epithelial lining fluid, can also induce •OH formation. The dose of radical per puff associated with e-cigarette vaping was 10-1000 times lower than the reported dose generated by cigarette smoking. However, the daily average •OH dose can be comparable to that from cigarette smoking depending on vaping patterns. Overall, e-cigarette users who use VG-based flavored e-cigarettes at higher power output settings may be at increased risk for •OH exposures and related health consequences such as asthma and chronic obstructive pulmonary disease.

SUBMITTER: Son Y 

PROVIDER: S-EPMC6579624 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Hydroxyl Radicals in E-Cigarette Vapor and E-Vapor Oxidative Potentials under Different Vaping Patterns.

Son Yeongkwon Y   Mishin Vladimir V   Laskin Jeffrey D JD   Mainelis Gediminas G   Wackowski Olivia A OA   Delnevo Cristine C   Schwander Stephan S   Khlystov Andrey A   Samburova Vera V   Meng Qingyu Q  

Chemical research in toxicology 20190423 6


Available studies, while limited in number, suggest that e-cigarette vaping induces oxidative stress, with one potential mechanism being the direct formation of reactive oxygen species (ROS) in e-vapor. In the present studies, we measured the formation of hydroxyl radical (<sup>•</sup>OH), the most destructive ROS, in e-vapor under a range of vaping patterns (i.e., power settings, solvent concentrations, flavorings). Study results show that increased power output and puff volume correspond with  ...[more]

Similar Datasets

| S-EPMC1219507 | biostudies-other
| S-EPMC7920856 | biostudies-literature
| S-EPMC11320563 | biostudies-literature
| S-EPMC3236504 | biostudies-literature
| S-EPMC8177470 | biostudies-literature
| S-EPMC6350771 | biostudies-literature
| S-EPMC3409745 | biostudies-literature
| S-EPMC4140529 | biostudies-literature
| S-EPMC10020901 | biostudies-literature
| S-EPMC9611867 | biostudies-literature