Project description:BackgroundTo report newly found TSPAN12 mutations with a unique form of familial exudative vitreoretinopathy (FEVR) and find out the possible mechanism of a repeated novel intronic variant in TSPAN12 led to FEVR.ResultsNine TSPAN12 mutations with a unique form of FEVR were detected by panel-based NGS. MINI-Gene assay showed two splicing modes of mRNA that process two different bands A and B, and mutant-type shows replacement with the splicing mode of Exon11 hopping. Construction of wild-type and mutant TSPAN12 vector showed the appearance of premature termination codons (PTC). In vitro expression detection showed significant down-regulated expression level of TSPAN12 mRNAs and proteins in cells transfected with mutant vectors compared with in wild-type group. On the contrary, translation inhibitor CHX and small interfering RNA of UPF1 (si-UPF1) significantly increased mRNA or protein expression of TSPAN12 in cells transfected with the mutant vectors.ConclusionsNine mutations in TSPAN12 gene are reported in 9 FEVR patients with a unique series of ocular abnormalities. The three novel TSPAN12 mutations trigger NMD would cause the decrease of TSPAN12 proteins that participate in biosynthesis and assembly of microfibers, which might lead to FEVR, and suggest that intronic sequence analysis might be a vital tool for genetic counseling and prenatal diagnoses.
Project description:Familial exudative vitreoretinopathy (FEVR) is an inherited blinding disorder of the retinal vascular system. Although mutations in three genes (LRP5, FZD4, and NDP) are known to cause FEVR, these account for only a fraction of FEVR cases. The proteins encoded by these FEVR genes form part of a signaling complex that activates the Norrin-beta-catenin signaling pathway. Recently, through a large-scale reverse genetic screen in mice, Junge and colleagues identified an additional member of this signaling complex, Tspan12. Here, we report that mutations in TSPAN12 also cause autosomal-dominant FEVR. We describe seven mutations identified in a cohort of 70 FEVR patients in whom we had already excluded the known FEVR genes. This study provides further evidence for the importance of the Norrin-beta-catenin signaling pathway in the development of the retinal vasculature and also indicates that more FEVR genes remain to be identified.
Project description:PURPOSE: Mutations in tetraspanin 12 (TSPAN12) have recently been identified as a cause of autosomal dominant familial exudative vitreoretinopathy (FEVR). The purpose of this study was to detect TSPAN12 mutations in Chinese patients with FEVR and to describe the associated phenotypes. METHODS: Sanger sequencing was used to analyze the seven coding exons and their adjacent regions of TSPAN12 in 49 unrelated FEVR patients. Clinical phenotypes of the patients with TSPAN12 mutations were documented. RESULTS: Three novel heterozygous mutations in TSPAN12 were identified in three patients from unrelated families: c.146C>T (p.Thr49Met), c.313T>C (p.Cys105Arg), and c.601delC (p.Leu201PhefsX14). All three mutations involved highly conserved residues and were not present in 180 normal individuals. Ocular phenotypes included retinal folds, inferotemporal dragging of the optic disc and macula, increased vessels in the equatorial region, and a peripheral avascular zone. A father and his daughter had the same mutation but the father only had mild peripheral fundus changes while his daughter had obvious dragged disc and macular ectopia. CONCLUSIONS: Our results suggest that TSPAN12 mutations are responsible for FEVR. Similar to patients with mutations in NDP, LRP5, or FZD4, the phenotypes associated with TSPAN12 mutations showed great variations between different individuals within a family and between the two eyes in individual patients.
Project description:PurposeFamilial exudative vitreoretinopathy (FEVR) is a group of inherited blinding eye diseases characterized by defects in the development of the retinal vessels. Recent studies have identified genetic variants in tetraspanin 12 (TSPAN12) as a cause of FEVR. The purpose of this study was to identify novel TSPAN12 mutations in Chinese patients with FEVR and to describe the associated phenotypes.MethodsMutation screening was performed by directly sequencing PCR products of genomic DNA with primers designed to amplify the seven coding exons and adjacent intronic regions of the FEVR-causing gene TSPAN12. Clinical phenotypes of the patients with TSPAN12 mutations were documented. Wild-type and mutant TSPAN12 proteins were assayed for the Norrin-β-catenin signaling pathway with luciferase reporter assays.ResultsThree novel heterozygous mutations in TSPAN12 were identified: c.566G>A (p.C189Y), c.177delC (p.Y59fsX67), and c.C254T (p.T85M). All three mutations involved highly conserved residues and were not present in 200 normal individuals. Ocular phenotypes included increased ramification of the peripheral retinal vessels, a peripheral avascular zone, inferotemporal dragging of the optic disc and macula, and retinal folds. The probands showed relatively severe retinopathy, whereas the other family members were often asymptomatic. In SuperTopFlash (STF) cell line transfection studies, C189Y, Y59fsX67, and T85M mutants failed to induce luciferase reporter activity in response to Norrin.ConclusionsWe found three novel TSPAN12 mutations in Chinese patients with autosomal dominant FEVR, and suggest that TSPAN12 mutations cause FEVR. The phenotypes associated with the TSPAN12 mutations showed extensive variation in disease severity among members of the same family, which implied the complexity of FEVR mutations and phenotypes.
Project description:PurposeTo report the novel causative variants in five Chinese families with familial exudative vitreoretinopathy (FEVR).MethodsFive unrelated Chinese families diagnosed with FEVR were enrolled in this study. Ocular examinations and genetic analysis were performed on the probands and family members. Luciferase assay was performed to evaluate the variants' impacts on Norrin/β-catenin signaling activity.ResultsFive novel variants, including two frameshifts, c.518delA (p.Glu173Glyfs*42) and c.719delT (p.Leu240Profs*21), two missenses, c.482G>T (p.Gly161Val) and c. 614G>C (p. Gly205Ala), and one nonsense, c.375G>A (p.Trp125*), were identified in the TSPAN12 gene in this study. All the variants were co-segregated within each family and were predicted as pathogenic in silico. The luciferase assay showed all variants lead to various degrees of compromised Norrin/β-catenin signaling activity.ConclusionsOur study expanded the variant spectrum and provided information for the genetic testing of FEVR by showing five novel FEVR-associated pathogenic variants in TSPAN12.Translational relevanceOur study expanded the spectrum of FEVR-associated TSPAN12 variants and further supported the inclusion of TSPAN12 gene in the evaluation of cases concerning for FEVR.
Project description:BackgroundFamilial exudative vitreoretinopathy (FEVR) is a severe clinically and genetically heterogeneous retinal disorder characterized with failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. The purpose of this study was to investigate the molecular mechanisms by which the start codon mutation of the TSPAN12 causes difference in clinical manifestations between individuals in the same family.MethodsNext-generation sequencing (NGS)-based target capture sequencing was performed in proband with a diagnosis of FEVR and their normal visual acuity family members. Cosegregation analysis of the candidate causative variant was performed in additional family members by using Sanger sequencing. Complete fundus examination, fundus fluorescein angiography (FFA), and family history collection were performed in all family members. Potential candidate causative variants were verified with reference to guidelines and standards from the American College of Medical Genetics and Genomics.ResultsWe identified a novel heterozygous missense mutation (c.1A>G, p.M1V) localized in the start codon of the TSPAN12 and was detected as a potentially disease-causing variant for the proband. Retrospective analysis of clinical data, fundus examination, and FFA showed that the mutant carrier presented peripheral retinal vascular anomalies in early stages, and visual acuity did not show significant effects. However, the proband who carried this mutation and his cousin showed typical high-stage FEVR fundus changes coupled with a sharp decline in vision.ConclusionsWe report a novel start codon mutation (c.1A>G, p.M1V) in the TSPAN12 that causes clinically heterogeneous manifestations. Our results expand the mutation spectrums of TSPAN12, and will be valuable for disease diagnosis, prognosis, genetic counseling, and enriching our understanding of the role of the tetraspanin-12 protein in the pathogenesis of FEVR.
Project description:Familial exudative vitreoretinopathy (FEVR) is a genetically heterogeneous retinal disorder characterized by abnormal vascularisation of the peripheral retina, often accompanied by retinal detachment. To date, mutations in three genes (FZD4, LRP5, and NDP) have been shown to be causative for FEVR. In two large Dutch pedigrees segregating autosomal-dominant FEVR, genome-wide SNP analysis identified an FEVR locus of approximately 40 Mb on chromosome 7. Microsatellite marker analysis suggested similar at risk haplotypes in patients of both families. To identify the causative gene, we applied next-generation sequencing in the proband of one of the families, by analyzing all exons and intron-exon boundaries of 338 genes, in addition to microRNAs, noncoding RNAs, and other highly conserved genomic regions in the 40 Mb linkage interval. After detailed bioinformatic analysis of the sequence data, prioritization of all detected sequence variants led to three candidates to be considered as the causative genetic defect in this family. One of these variants was an alanine-to-proline substitution in the transmembrane 4 superfamily member 12 protein, encoded by TSPAN12. This protein has very recently been implicated in regulating the development of retinal vasculature, together with the proteins encoded by FZD4, LRP5, and NDP. Sequence analysis of TSPAN12 revealed two mutations segregating in five of 11 FEVR families, indicating that mutations in TSPAN12 are a relatively frequent cause of FEVR. Furthermore, we demonstrate the power of targeted next-generation sequencing technology to identify disease genes in linkage intervals.
Project description:PurposeWe report the first known case of eye findings associated with a Fas-associated protein with death domain (FADD) gene mutation, an exceedingly rare entity.ObservationsA 7-year-old boy was referred for decreased vision and eye examination revealed cystoid macular edema and peripheral retinal ischemia in both eyes and progression to tractional retinal detachment in the right eye.Conclusions and importanceThis case suggests that baseline and annual ophthalmic screening may be beneficial in individuals with FADD mutations. However, greater documentation of cases may be necessary before deriving a clear interval screening recommendation.
Project description:We evaluated the retinal function of retinal dragging (Rdrag) and radial retinal folds (Rfolds) in eyes with familial exudative vitreoretinopathy (FEVR) using full-field electroretinography (ERG). Seventeen eyes of nine patients with FEVR who had Rdrag or Rfolds were retrospectively studied. Eyes were classified into four groups according to the severity of the retinal alterations: Group 1, without Rdrag or Rfolds (5 eyes); Group 2, with Rdrag (4 eyes); Group 3, with Rfolds (6 eyes); and Group 4, with Rfolds in which all major retinal vessels were involved (2 eyes). The amplitudes of all ERG components and the implicit times of the photopic a- and b-waves and 30-Hz flicker responses were decreased or prolonged as the severity of the retinal alterations increased (P?<?0.01). The photopic negative response was most severely affected and nearly undetectable in all eyes in Groups 3 and 4, although the other ERG components were detectable in all eyes in Group 3 and one eye in Group 4. These results suggest the decrease of retinal functions was correlated with the degree of severity of Rdrag and Rfolds in eyes with FEVR. In addition, the function of the retinal ganglion cells appears to be more severely affected compared with the others.
Project description:Familial exudative vitreoretinopathy (FEVR) is a hereditary vitreoretinal disorder that can cause various types of retinal detachments. The abnormalities in eyes with FEVR are caused by poor vascularization in the peripheral retina. The genetics of FEVR is highly heterogeneous, and mutations in the genes for Wnt signaling and a transcription factor have been reported to be responsible for FEVR. These factors have been shown to be the regulators of the pathophysiological pathways of retinal vascular development. Studies conducted to identify the causative genes of FEVR have uncovered a diverse and complex relationship between FEVR and other diseases; for example, Norrie disease, a Mendelian-inherited disease; retinopathy of prematurity, a multifactorial genetic disease; and Coats disease, a nongenetic disease, associated with pediatric retinal detachments.