Unknown

Dataset Information

0

Scn2a Haploinsufficiency in Mice Suppresses Hippocampal Neuronal Excitability, Excitatory Synaptic Drive, and Long-Term Potentiation, and Spatial Learning and Memory.


ABSTRACT: Nav1.2, a voltage-gated sodium channel subunit encoded by the Scn2a gene, has been implicated in various brain disorders, including epilepsy, autism spectrum disorder, intellectual disability, and schizophrenia. Nav1.2 is known to regulate the generation of action potentials in the axon initial segment and their propagation along axonal pathways. Nav1.2 also regulates synaptic integration and plasticity by promoting back-propagation of action potentials to dendrites, but whether Nav1.2 deletion in mice affects neuronal excitability, synaptic transmission, synaptic plasticity, and/or disease-related animal behaviors remains largely unclear. Here, we report that mice heterozygous for the Scn2a gene (Scn2a +/- mice) show decreased neuronal excitability and suppressed excitatory synaptic transmission in the presence of network activity in the hippocampus. In addition, Scn2a +/- mice show suppressed hippocampal long-term potentiation (LTP) in association with impaired spatial learning and memory, but show largely normal locomotor activity, anxiety-like behavior, social interaction, repetitive behavior, and whole-brain excitation. These results suggest that Nav1.2 regulates hippocampal neuronal excitability, excitatory synaptic drive, LTP, and spatial learning and memory in mice.

SUBMITTER: Shin W 

PROVIDER: S-EPMC6582764 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

<i>Scn2a</i> Haploinsufficiency in Mice Suppresses Hippocampal Neuronal Excitability, Excitatory Synaptic Drive, and Long-Term Potentiation, and Spatial Learning and Memory.

Shin Wangyong W   Kweon Hanseul H   Kang Ryeonghwa R   Kim Doyoun D   Kim Kyungdeok K   Kang Muwon M   Kim Seo Yeong SY   Hwang Sun Nam SN   Kim Jin Yong JY   Yang Esther E   Kim Hyun H   Kim Eunjoon E  

Frontiers in molecular neuroscience 20190604


Nav1.2, a voltage-gated sodium channel subunit encoded by the <i>Scn2a</i> gene, has been implicated in various brain disorders, including epilepsy, autism spectrum disorder, intellectual disability, and schizophrenia. Nav1.2 is known to regulate the generation of action potentials in the axon initial segment and their propagation along axonal pathways. Nav1.2 also regulates synaptic integration and plasticity by promoting back-propagation of action potentials to dendrites, but whether Nav1.2 de  ...[more]

Similar Datasets

| S-EPMC8410058 | biostudies-literature
| S-EPMC6514166 | biostudies-literature
| S-EPMC3245784 | biostudies-literature
| S-EPMC7366740 | biostudies-literature
| S-EPMC8342808 | biostudies-literature
| S-EPMC10563808 | biostudies-literature
| S-EPMC5319997 | biostudies-literature
| S-EPMC8385910 | biostudies-literature
| S-EPMC5505971 | biostudies-literature
| S-EPMC7704911 | biostudies-literature