Unknown

Dataset Information

0

Optical Coherence Tomography Angiography for Assessment of the 3-Dimensional Structures of Polypoidal Choroidal Vasculopathy.


ABSTRACT:

Importance

Investigating the quantitative 3-dimensional (3-D) anatomy of polypoidal complex is important for a better understanding of the pathogenesis of polypoidal choroidal vasculopathy (PCV).

Objective

To quantitatively evaluate the 3-D characteristics of polypoidal structures, branching vascular networks (BVNs), and origin of PCV using optical coherence tomography angiography (OCTA) and multiple image systems.

Design, setting, and participants

A prospective, observational study was conducted in 47 consecutive Taiwanese patients (47 eyes) from May 21, 2015, to April 30, 2017. All participants were scanned with the Optovue-RTVue-XR-Avanti OCTA system. Patients in whom PCV was identified on OCTA were examined to define characteristics and structures of the original spouting vessels (stalks) from the choroid, polypoidal structures, and BVNs on OCTA.

Main outcomes and measures

Quantitative analysis of 3-D structures of the polypoidal complex.

Results

Among the 47 patients, the mean (SD) patient age was 68.9 (8.0) years, and 28 (59.6%) men were included. Clear images of polypoidal structures could be detected in 17 eyes (36.2%, 22 polypoidal structures), BVNs in 26 eyes (55.3%, 26 tufts of BVNs), and stalks of origin from the choroid in 26 eyes (55.3%, 26 stalks) on the en face plane on OCTA. All polypoidal structures were found at a mean (SD) height of 45.3 (36.1) μm above the retinal pigment epithelium (RPE) reference plane that was preset by the machine, while the BVNs were found at a mean (SD) depth of 28.6 (14.2) μm below the RPE reference plane and the choroidal stalks at 80.4 (24.4) μm below RPE reference plane. The mean (SD) thickness of polypoidal structures was 38.4 (15.5) μm and of BVNs, 60.2 (25.0) μm. The polypoidal structures were all above the Bruch membrane within the dome of the RPE detachment, the choroidal stalks were all in the choroid layer. The BVNs could be either above (up to 18 μm), within, or below (up to 28 μm) the Bruch membrane and were in proximity to the double layers of flattened RPE detachment.

Conclusions and relevance

These results demonstrate a 3-D architecture of PCV that may be helpful for a better understanding of the anatomy, pathophysiology, and pathogenesis of PCV.

SUBMITTER: Chi YT 

PROVIDER: S-EPMC6583551 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6567849 | biostudies-literature
| S-EPMC6567979 | biostudies-literature
| S-EPMC6931027 | biostudies-literature
| S-EPMC9242399 | biostudies-literature
| S-EPMC4811690 | biostudies-literature
| S-EPMC5736141 | biostudies-literature
| S-EPMC7900872 | biostudies-literature
| S-EPMC7853135 | biostudies-literature
| S-EPMC6767036 | biostudies-literature
| S-EPMC4816368 | biostudies-other