Interleukin-37 inhibits osteoclastogenesis and alleviates inflammatory bone destruction.
Ontology highlight
ABSTRACT: Excessive osteoclast formation is one of the important pathological features of inflammatory bone destruction. Interleukin-37 (IL-37) is an anti-inflammatory agent that is present throughout the body, but it displays low physiological retention. In our study, high levels of the IL-37 protein were detected in clinical specimens from patients with bone infections. However, the impact of IL-37 on osteoclast formation remains unclear. Next, IL-37 alleviated the inflammatory bone destruction in the mouse in vivo. We used receptor activator of nuclear factor-κB ligand and lipopolysaccharide to trigger osteoclastogenesis under physiological and pathological conditions to observe the role of IL-37 in this process and explore the potential mechanism of this phenomenon. In both induction models, IL-37 exerted inhibitory effects on osteoclast differentiation and bone resorption. Furthermore, IL-37 decreased the phosphorylation of inhibitor of κBα and p65 and the expression of nuclear factor of activated T cells c1, while the dimerization inhibitor of myeloid differentiation factor 88 reversed the effects. These data provide evidence that IL-37 modulates osteoclastogenesis and a theoretical basis for the clinical application of IL-37 as a treatment for bone loss-related diseases.
SUBMITTER: Tang R
PROVIDER: S-EPMC6587950 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA