Unknown

Dataset Information

0

Chemical defense responses of upland cotton, Gossypium hirsutum L. to physical wounding.


ABSTRACT: Upland cotton (Gossypium hirsutum L.) produces terpenoid aldehydes (TAs) that protect the plant from microbial and insect infestations. Foliar TAs include plus (+)- and minus (-)-gossypol, hemigossypolone, and heliocides. To examine foliar TAs' response to physical wounding, the four TA derivatives of a fully glanded G. hirsutum variety JACO GL were quantified by ultra-high performance liquid chromatography. The results show that foliar heliocides increased by 1.7-fold in younger leaves after wounding. While the hemigossypolone level was not affected by the physical wounding, the level of heliocides was significantly increased up to 1.8-fold in the younger leaves. Upland cotton accumulates concentrated carbohydrates, amino acids, and fatty acids in foliar extrafloral nectar (EFN) to serve as a nutrient resource, which attracts both beneficial insects and damaging pests. To better understand the nectar physiology, particularly to determine the temporal dynamics of EFN metabolites in response to the wounding, a gas chromatograph-mass spectrometer (GC-MS) was used to perform metabolic profiling analyses of a G. hirsutum variety Deltapine 383 that has fully developed extrafloral nectaries. A total of 301 compounds were monitored, specifically 75 primary metabolites, two secondary metabolites and 224 unidentified compounds. The physical wounding treatment changed the EFN composition and lowered overall production. The accumulation of 30 metabolites was altered in response to the wounding treatment and threonic acid levels increased consistently. GC-MS combined with Kovat's analysis enabled identification of EFN secondary metabolites including furfuryl alcohol and 5-hyrdomethoxyfurfural, which both have antioxidant and antimicrobial properties that may protect the nectar against microbial pathogens. This study provides new insights into the wounding response of cotton plants in terms of cotton metabolites found in leaf glands and extrafloral nectar as well as highlighting some protective functions of secondary metabolites produced in foliar glands and extrafloral nectaries.

SUBMITTER: Park SH 

PROVIDER: S-EPMC6589528 | biostudies-literature | 2019 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Chemical defense responses of upland cotton, <i>Gossypium hirsutum</i> L. to physical wounding.

Park Sang-Hyuck SH   Scheffler Jodi J   Scheffler Brian B   Cantrell Charles L CL   Pauli Christopher S CS  

Plant direct 20190517 5


Upland cotton (<i>Gossypium hirsutum</i> L.) produces terpenoid aldehydes (TAs) that protect the plant from microbial and insect infestations. Foliar TAs include plus (+)- and minus (-)-gossypol, hemigossypolone, and heliocides. To examine foliar TAs' response to physical wounding, the four TA derivatives of a fully glanded <i>G. hirsutum</i> variety JACO GL were quantified by ultra-high performance liquid chromatography. The results show that foliar heliocides increased by 1.7-fold in younger l  ...[more]

Similar Datasets

| S-EPMC6013946 | biostudies-literature
| S-EPMC5841646 | biostudies-literature
| S-EPMC8342446 | biostudies-literature
| S-EPMC5459830 | biostudies-literature
| S-EPMC7843563 | biostudies-literature
| S-EPMC4995033 | biostudies-literature
| S-EPMC5591532 | biostudies-literature
2010-12-22 | GSE23517 | GEO
| PRJNA670627 | ENA
| S-EPMC5462432 | biostudies-literature