Unknown

Dataset Information

0

Climate change, extreme events and increased risk of salmonellosis in Maryland, USA: Evidence for coastal vulnerability.


ABSTRACT:

Background

Salmonella is a leading cause of acute gastroenteritis worldwide. Patterns of salmonellosis have been linked to weather events. However, there is a dearth of data regarding the association between extreme events and risk of salmonellosis, and how this risk may disproportionately impact coastal communities.

Methods

We obtained Salmonella case data from the Maryland Foodborne Diseases Active Surveillance Network (2002-2012), and weather data from the National Climatic Data Center (1960-2012). We developed exposure metrics related to extreme temperature and precipitation events using a 30 year baseline (1960-1989) and linked them with county-level salmonellosis data. Data were analyzed using negative binomial Generalized Estimating Equations.

Results

We observed a 4.1% increase in salmonellosis risk associated with a 1 unit increase in extreme temperature events (incidence rate ratio (IRR):1.041; 95% confidence interval (CI):1.013-1.069). This increase in risk was more pronounced in coastal versus non-coastal areas (5.1% vs 1.5%). Likewise, we observed a 5.6% increase in salmonellosis risk (IRR:1.056; CI:1.035-1.078) associated with a 1 unit increase in extreme precipitation events, with the impact disproportionately felt in coastal areas (7.1% vs 3.6%).

Conclusions

To our knowledge, this is the first empirical evidence showing that extreme temperature/precipitation events-that are expected to be more frequent and intense in coming decades-are disproportionately impacting coastal communities with regard to salmonellosis. Adaptation strategies need to account for this differential burden, particularly in light of ever increasing coastal populations.

SUBMITTER: Jiang C 

PROVIDER: S-EPMC6590700 | biostudies-literature | 2015 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Climate change, extreme events and increased risk of salmonellosis in Maryland, USA: Evidence for coastal vulnerability.

Jiang Chengsheng C   Shaw Kristi S KS   Upperman Crystal R CR   Blythe David D   Mitchell Clifford C   Murtugudde Raghu R   Sapkota Amy R AR   Sapkota Amir A  

Environment international 20150618


<h4>Background</h4>Salmonella is a leading cause of acute gastroenteritis worldwide. Patterns of salmonellosis have been linked to weather events. However, there is a dearth of data regarding the association between extreme events and risk of salmonellosis, and how this risk may disproportionately impact coastal communities.<h4>Methods</h4>We obtained Salmonella case data from the Maryland Foodborne Diseases Active Surveillance Network (2002-2012), and weather data from the National Climatic Dat  ...[more]

Similar Datasets

| S-EPMC8449873 | biostudies-literature
| S-EPMC9091136 | biostudies-literature
| S-EPMC6888219 | biostudies-literature
| S-EPMC6792369 | biostudies-literature
| S-EPMC10081849 | biostudies-literature
| S-EPMC9462684 | biostudies-literature
| S-EPMC9668817 | biostudies-literature
| S-EPMC10147900 | biostudies-literature
| S-EPMC2824389 | biostudies-literature
| S-EPMC7661409 | biostudies-literature