ABSTRACT: Sediment flushing can tackle reservoirs siltation and improve sediment flux through dammed rivers. However, the increase of the sediment loading below the dam can trigger a suite of undesired ecological effects in the downstream river reaches. To limit these drawbacks, sediment flushing can be controlled, by jointly regulating the sediment concentration of the evacuated water and the streamflow in the downstream channel. In this paper, we report on ten controlled sediment flushing operations (CSFOs), carried out between 2006 and 2012 in the central Italian Alps, at four hydropower reservoirs. These CSFOs displayed specific common traits: (i) Limits were set by the local environmental authorities concerning the allowable suspended sediment concentration. (ii) Reservoirs were fully drawn-down, earth-moving equipment was used to dislodge sediment, and the downstream water discharge was increased, compared to baseflow, by operating upstream intakes. (iii) Abiotic and biotic measurements in selected downstream reaches (before, during, and after the CSFOs) represented an integral part of the operations. In contrast, significant differences characterize the hydropower facilities (elevation and storage of reservoirs, in particular) as well as the basic CSFOs parameters (i.e., season, duration, mass and grain-size of the evacuated sediment, suspended sediment concentration). The macroinvertebrate assemblages resulted noticeably impacted by the CSFOs. In the short term, a significant density drop was observed, slightly influenced by the extent of the perturbation. In contrast, the latter appeared to control the assemblages contraction in terms of richness, according to the different sensitivity to sediment stress of the different taxa. The time employed to recover pre-CSFO standard ranged from few months to just under one year, and the related patterns would seem mostly correlated to the flushing season and to further site specificities. The density of trout populations was impacted as well, thus suggesting the adoption of mitigating strategies as removal by electrofishing before, and repopulation after the CSFO.