Unknown

Dataset Information

0

Potassium-channel mutations and cardiac arrhythmias--diagnosis and therapy.


ABSTRACT: The coordinated generation and propagation of action potentials within cardiomyocytes creates the intrinsic electrical stimuli that are responsible for maintaining the electromechanical pump function of the human heart. The synchronous opening and closing of cardiac Na(+), Ca(2+), and K(+) channels corresponds with the activation and inactivation of inward depolarizing (Na(+) and Ca(2+)) and outward repolarizing (K(+)) currents that underlie the various phases of the cardiac action potential (resting, depolarization, plateau, and repolarization). Inherited mutations in pore-forming ? subunits and accessory ? subunits of cardiac K(+) channels can perturb the atrial and ventricular action potential and cause various cardiac arrhythmia syndromes, including long QT syndrome, short QT syndrome, Brugada syndrome, and familial atrial fibrillation. In this Review, we summarize the current understanding of the molecular and cellular mechanisms that underlie K(+)-channel-mediated arrhythmia syndromes. We also describe translational advances that have led to the emerging role of genetic testing and genotype-specific therapy in the diagnosis and clinical management of individuals who harbor pathogenic mutations in genes that encode ? or ? subunits of cardiac K(+) channels.

SUBMITTER: Giudicessi JR 

PROVIDER: S-EPMC6590894 | biostudies-literature | 2012 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Potassium-channel mutations and cardiac arrhythmias--diagnosis and therapy.

Giudicessi John R JR   Ackerman Michael J MJ  

Nature reviews. Cardiology 20120131 6


The coordinated generation and propagation of action potentials within cardiomyocytes creates the intrinsic electrical stimuli that are responsible for maintaining the electromechanical pump function of the human heart. The synchronous opening and closing of cardiac Na(+), Ca(2+), and K(+) channels corresponds with the activation and inactivation of inward depolarizing (Na(+) and Ca(2+)) and outward repolarizing (K(+)) currents that underlie the various phases of the cardiac action potential (re  ...[more]

Similar Datasets

| S-EPMC1820688 | biostudies-literature
| S-EPMC20560 | biostudies-literature
| S-EPMC1170178 | biostudies-other
| S-EPMC8835759 | biostudies-literature
| S-EPMC1559598 | biostudies-literature
| S-EPMC2386856 | biostudies-literature
| S-EPMC8037009 | biostudies-literature
| S-EPMC3980511 | biostudies-literature
| S-EPMC9721303 | biostudies-literature
| S-EPMC3190784 | biostudies-literature