Similarity judgments and cortical visual responses reflect different properties of object and scene categories in naturalistic images.
Ontology highlight
ABSTRACT: Numerous factors have been reported to underlie the representation of complex images in high-level human visual cortex, including categories (e.g. faces, objects, scenes), animacy, and real-world size, but the extent to which this organization reflects behavioral judgments of real-world stimuli is unclear. Here, we compared representations derived from explicit behavioral similarity judgments and ultra-high field (7T) fMRI of human visual cortex for multiple exemplars of a diverse set of naturalistic images from 48 object and scene categories. While there was a significant correlation between similarity judgments and fMRI responses, there were striking differences between the two representational spaces. Behavioral judgements primarily revealed a coarse division between man-made (including humans) and natural (including animals) images, with clear groupings of conceptually-related categories (e.g. transportation, animals), while these conceptual groupings were largely absent in the fMRI representations. Instead, fMRI responses primarily seemed to reflect a separation of both human and non-human faces/bodies from all other categories. Further, comparison of the behavioral and fMRI representational spaces with those derived from the layers of a deep neural network (DNN) showed a strong correspondence with behavior in the top-most layer and with fMRI in the mid-level layers. These results suggest a complex relationship between localized responses in high-level visual cortex and behavioral similarity judgments - each domain reflects different properties of the images, and responses in high-level visual cortex may correspond to intermediate stages of processing between basic visual features and the conceptual categories that dominate the behavioral response.
SUBMITTER: King ML
PROVIDER: S-EPMC6591094 | biostudies-literature | 2019 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA