Unknown

Dataset Information

0

Stacking sequence variations in vaterite resolved by precession electron diffraction tomography using a unified superspace model.


ABSTRACT: As a metastable phase, vaterite is involved in the first step of crystallization of several carbonate-forming systems including the two stable polymorphs calcite and aragonite. Its complete structural determination would consequently shed important light to understand scaling formation and biomineralization processes. While vaterite's hexagonal substructure (a0?~?4.1?Å and c0?~?8.5?Å) and the organization of the carbonate groups within a single layer is known, conflicting interpretations regarding the stacking sequence remain and preclude the complete understanding of the structure. To resolve the ambiguities, we performed precession electron diffraction tomography (PEDT) to collect single crystal data from 100?K to the ambient temperature. The structure was solved ab initio and described over all the temperature range using a unified modulated structure model in the superspace group C12/c1(?0?)00 with a?=?a0?=?4.086(3)?Å, b?=?[Formula: see text]a0?=?7.089(9)?Å, c?=?c0?=?8.439(9)?Å, ??=???=???=?90° and q?=?[Formula: see text]a*?+??c*. At 100?K the model presents a pure 4-layer stacking sequence with ??=?[Formula: see text] whereas at the ambient temperature, ordered stacking faults are introduced leading to ??

SUBMITTER: Steciuk G 

PROVIDER: S-EPMC6591425 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Stacking sequence variations in vaterite resolved by precession electron diffraction tomography using a unified superspace model.

Steciuk Gwladys G   Palatinus Lukáš L   Rohlíček Jan J   Ouhenia Salim S   Chateigner Daniel D  

Scientific reports 20190624 1


As a metastable phase, vaterite is involved in the first step of crystallization of several carbonate-forming systems including the two stable polymorphs calcite and aragonite. Its complete structural determination would consequently shed important light to understand scaling formation and biomineralization processes. While vaterite's hexagonal substructure (a<sub>0</sub> ~ 4.1 Å and c<sub>0</sub> ~ 8.5 Å) and the organization of the carbonate groups within a single layer is known, conflicting i  ...[more]

Similar Datasets

| S-EPMC6690130 | biostudies-literature
| S-EPMC9065332 | biostudies-literature
| S-EPMC6712965 | biostudies-literature
| S-EPMC6400191 | biostudies-literature
| S-EPMC4458861 | biostudies-literature
| S-EPMC5993221 | biostudies-literature
| S-EPMC7240780 | biostudies-literature
| S-EPMC5114672 | biostudies-literature
| S-EPMC6396396 | biostudies-literature
| S-EPMC5261824 | biostudies-literature