Unknown

Dataset Information

0

A novel function of artesunate on inhibiting migration and invasion of fibroblast-like synoviocytes from rheumatoid arthritis patients.


ABSTRACT:

Introduction

Anti-malarial drug artesunate can suppress inflammation and prevent cartilage and bone destruction in collagen-induced arthritis model in rats-suggesting it may be a potent drug for rheumatoid arthritis (RA) therapy. We aimed to investigate its effect on the invasive property of fibroblast-like synoviocytes (FLS) from patients with RA.

Methods

Synovial tissues were obtained by closed needle biopsy from active RA patients, and FLS were isolated and cultured in vitro. RA-FLS were treated with artesunate at various concentrations, while methotrexate or hydroxychloroquine was employed as comparator drugs. Cell viability, proliferation, cell cycle, apoptosis, migration, invasion, and pseudopodium formation of RA-FLS were assessed by CCK-8 assays, EdU staining, Annexin V-FITC/PI staining, transwell assays, or F-actin staining, respectively. Further, relative changes of expressed proteases were analyzed by Proteome profiler human protease array and verified by quantitative real-time PCR (qPCR), Western blot, and ELISA. The expression of signaling molecules of MAPK, NF-κB, AP-1, and PI3K/Akt pathways were measured by qPCR and Western blot. PDK-1 knockdown by specific inhibitor AR-12 or siRNA transfection was used to verify the pharmacological mechanism of artesunate on RA-FLS.

Results

Artesunate significantly inhibited the migration and invasion of RA-FLS in a dose-dependent manner with or without TNF-α stimulation. The effect was mediated through artesunate inhibition of MMP-2 and MMP-9 production, and pre-treatment with exogenous MMP-9 reversed the inhibitory effect of artesunate on RA-FLS invasion. Artesunate had a stronger inhibitory effect on migration and invasion of RA-FLS as well as greater anti-inflammatory effect than those of hydroxychloroquine. Similar inhibitory effect was detected between artesunate and methotrexate, and synergy was observed when combined. Mechanistically, artesunate significantly inhibited PDK-1 expression as well as Akt and RSK2 phosphorylation-in a similar manner to PDK-1-specific inhibitor AR-12 or PDK-1 knockdown by siRNA transfection. This inhibition results in suppression of RA-FLS migration and invasion as well as decreased MMP-2 and MMP-9 expression.

Conclusions

Our study demonstrates artesunate is capable of inhibiting migration and invasion of RA-FLS through suppression of PDK1-induced activation of Akt and RSK2 phosphorylation-suggesting that artesunate may be a potential disease-modifying anti-rheumatic drug for RA.

SUBMITTER: Ma JD 

PROVIDER: S-EPMC6591920 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7425471 | biostudies-literature
| S-EPMC7685583 | biostudies-literature
| S-EPMC6921299 | biostudies-literature
| S-EPMC7227051 | biostudies-literature
| S-EPMC7937802 | biostudies-literature
| S-EPMC5953939 | biostudies-literature
| S-EPMC5345686 | biostudies-literature
| S-EPMC8756401 | biostudies-literature
| S-EPMC4963240 | biostudies-literature
2006-01-18 | E-GEOD-4061 | biostudies-arrayexpress