Unknown

Dataset Information

0

Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers.


ABSTRACT:

Introduction

Immunotherapy is regarded as one of the major breakthroughs in cancer treatment. Despite its success, only a subset of patients responds-urging the quest for predictive biomarkers. We hypothesize that artificial intelligence (AI) algorithms can automatically quantify radiographic characteristics that are related to and may therefore act as noninvasive radiomic biomarkers for immunotherapy response.

Patients and methods

In this study, we analyzed 1055 primary and metastatic lesions from 203 patients with advanced melanoma and non-small-cell lung cancer (NSCLC) undergoing anti-PD1 therapy. We carried out an AI-based characterization of each lesion on the pretreatment contrast-enhanced CT imaging data to develop and validate a noninvasive machine learning biomarker capable of distinguishing between immunotherapy responding and nonresponding. To define the biological basis of the radiographic biomarker, we carried out gene set enrichment analysis in an independent dataset of 262 NSCLC patients.

Results

The biomarker reached significant performance on NSCLC lesions (up to 0.83 AUC, P?ConclusionsThese results indicate that radiographic characteristics of lesions on standard-of-care imaging may function as noninvasive biomarkers for response to immunotherapy, and may show utility for improved patient stratification in both neoadjuvant and palliative settings.

SUBMITTER: Trebeschi S 

PROVIDER: S-EPMC6594459 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers.

Trebeschi S S   Drago S G SG   Birkbak N J NJ   Kurilova I I   Cǎlin A M AM   Delli Pizzi A A   Lalezari F F   Lambregts D M J DMJ   Rohaan M W MW   Parmar C C   Rozeman E A EA   Hartemink K J KJ   Swanton C C   Haanen J B A G JBAG   Blank C U CU   Smit E F EF   Beets-Tan R G H RGH   Aerts H J W L HJWL  

Annals of oncology : official journal of the European Society for Medical Oncology 20190601 6


<h4>Introduction</h4>Immunotherapy is regarded as one of the major breakthroughs in cancer treatment. Despite its success, only a subset of patients responds-urging the quest for predictive biomarkers. We hypothesize that artificial intelligence (AI) algorithms can automatically quantify radiographic characteristics that are related to and may therefore act as noninvasive radiomic biomarkers for immunotherapy response.<h4>Patients and methods</h4>In this study, we analyzed 1055 primary and metas  ...[more]

Similar Datasets

| S-EPMC8557514 | biostudies-literature
| S-EPMC8076712 | biostudies-literature
| S-EPMC10487043 | biostudies-literature
| S-EPMC9179588 | biostudies-literature
| S-EPMC6305278 | biostudies-literature
| S-EPMC5732814 | biostudies-literature
| S-EPMC7658512 | biostudies-literature
| S-EPMC7738948 | biostudies-literature
2013-05-27 | E-GEOD-43369 | biostudies-arrayexpress
| S-EPMC6711393 | biostudies-literature