Investigation of bidirectional longitudinal associations between advanced epigenetic age and peripheral biomarkers of inflammation and metabolic syndrome.
Ontology highlight
ABSTRACT: Epigenetic age estimations based on DNA methylation (DNAm) can predict human chronological age with a high level of accuracy. These DNAm age algorithms can also be used to index advanced cellular age, when estimated DNAm age exceeds chronological age. Advanced DNAm age has been associated with several diseases and metabolic and inflammatory pathology, but the causal direction of this association is unclear. The goal of this study was to examine potential bidirectional associations between advanced epigenetic age and metabolic and inflammatory markers over time in a longitudinal cohort of 179 veterans with a high prevalence of posttraumatic stress disorder (PTSD) who were assessed over the course of two years. Analyses focused on two commonly investigated metrics of advanced DNAm age derived from the Horvath (developed across multiple tissue types) and Hannum (developed in whole blood) DNAm age algorithms. Results of cross-lagged panel models revealed that advanced Hannum DNAm age at Time 1 (T1) was associated with increased (i.e., accounting for T1 levels) metabolic syndrome (MetS) severity at Time 2 (T2; p = < 0.001). This association was specific to worsening lipid panels and indicators of abdominal obesity (p = 0.001). In contrast, no baseline measures of inflammation or metabolic pathology were associated with changes in advanced epigenetic age over time. No associations emerged between advanced Horvath DNAm age and any of the examined biological parameters. Results suggest that advanced epigenetic age, when measured using an algorithm developed in whole blood, may be a prognostic marker of pathological metabolic processes. This carries implications for understanding pathways linking advanced epigenetic age to morbidity and mortality.
SUBMITTER: Morrison FG
PROVIDER: S-EPMC6594822 | biostudies-literature | 2019 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA