Project description:This pilot study is a 3-arm randomized control trial assessing the effectiveness of sequential or active choice in CRC (colorectal cancer) screening outreach vs. colonoscopy outreach only, in patients between 50-74 years old, who have received care at the University City or Valley Forge CCA (Community Care Associates) practices, are due for screening, and are asymptomatic for CRC. The three arms are: Arm 1: Direct schedule colonoscopy (Control), Arm 2: Direct schedule colonoscopy followed by mailed FIT(Fecal Immunochemical Test) (Sequential Choice), and Arm 3: Choice of direct schedule colonoscopy or mailed FIT (Active Choice).
Project description:This is a 3-arm randomized trial aimed at increasing rates of participation in colorectal cancer (CRC) screening by outreach to patients’ homes using choice architecture informed by behavioral science principles.
Project description:Polymerization of high internal phase emulsions (polyHIPEs) is a well-established method for the production of high porosity foams. Researchers are often regulated to using a time-intensive trial and error approach to achieve target pore architectures. In this work, we performed a systematic study to identify the relative effects of common emulsion parameters on pore architecture (mixing speed, surfactant concentration, organic phase viscosity, molecular hydrophobicity). Across different macromer chemistries, the largest magnitude of change in pore size was observed across surfactant concentration (~6 fold, 5-20 wt%), whereas changing mixing speeds (~4 fold, 500-2000 RPM) displayed a reduced effect. Furthermore, it was observed that organic phase viscosity had a marked effect on pore size (~4 fold, 6-170 cP) with no clear trend observed with molecular hydrophobicity in this range (logP = 1.9-4.4). The efficacy of 1,4-butanedithiol as a reactive diluent was demonstrated and provides a means to reduce organic phase viscosity and increase pore size without affecting polymer fraction of the resulting foam. Overall, this systematic study of the microarchitectural effects of these macromers and processing variables provides a framework for the rational design of polyHIPE architectures that can be used to accelerate design and meet application needs across many sectors.
Project description:Topologically nontrivial polar structures are not only attractive for high-density data storage, but also for ultralow power microelectronics thanks to their exotic negative capacitance. The vast majority of polar structures emerging naturally in ferroelectrics, however, are topologically trivial, and there are enormous interests in artificially engineered polar structures possessing nontrivial topology. Here we demonstrate reconstruction of topologically trivial strip-like domain architecture into arrays of polar vortex in (PbTiO3)10/(SrTiO3)10 superlattice, accomplished by fabricating a cross-sectional lamella from the superlattice film. Using a combination of techniques for polarization mapping, atomic imaging, and three-dimensional structure visualization supported by phase field simulations, we reveal that the reconstruction relieves biaxial epitaxial strain in thin film into a uniaxial one in lamella, changing the subtle electrostatic and elastostatic energetics and providing the driving force for the polar vortex formation. The work establishes a realistic strategy for engineering polar topologies in otherwise ordinary ferroelectric superlattices.
Project description:Tens of millions of people are currently choosing health coverage on a state or federal health insurance exchange as part of the Patient Protection and Affordable Care Act. We examine how well people make these choices, how well they think they do, and what can be done to improve these choices. We conducted 6 experiments asking people to choose the most cost-effective policy using websites modeled on current exchanges. Our results suggest there is significant room for improvement. Without interventions, respondents perform at near chance levels and show a significant bias, overweighting out-of-pocket expenses and deductibles. Financial incentives do not improve performance, and decision-makers do not realize that they are performing poorly. However, performance can be improved quite markedly by providing calculation aids, and by choosing a "smart" default. Implementing these psychologically based principles could save purchasers of policies and taxpayers approximately 10 billion dollars every year.
Project description:School meals are a primary source of nutrition for many adolescents. Determining factors that influence the selection of various foods can provide insight on strategies to improve students' cafeteria choices. This evaluation and observation was conducted at three Appalachian high schools to assess the cafeteria environment. The study developed and implemented an assessment tool created using principles of choice architecture and behavioral economics building on the work of the Cornell Center for Behavioral Economics in Child Nutrition Programs (BEN Center). The assessment tool scored eight components of the lunchroom-the exterior, hot serving area, cold serving area, salad bar, beverage area, payment station, dining area and grab-n-go, where a higher score equals healthier components offered. High school (HS) #1 earned 73/128 points (57%), HS #2 earned 69/128 (54%), and HS #3 earned 53/102 (52%). HS #3 did not have a grab-n-go option and the final score was out of 102. Video observation was used to collect data on lunchroom activity during mealtimes. Each school received reports that highlight the results and suggest improvements to raise their score. The scoring tool represents a novel way to assess the health of school lunches, provide insights on how to improve the healthfulness of students' lunch choice, and improve overall nutrition status.
Project description:Multi-material polymer scaffolds with multiscale pore architectures were characterized and tested with vascular and heart cells as part of a platform for replacing damaged heart muscle. Vascular and muscle scaffolds were constructed from a new material, poly(limonene thioether) (PLT32i), which met the design criteria of slow biodegradability, elastomeric mechanical properties, and facile processing. The vascular-parenchymal interface was a poly(glycerol sebacate) (PGS) porous membrane that met different criteria of rapid biodegradability, high oxygen permeance, and high porosity. A hierarchical architecture of primary (macroscale) and secondary (microscale) pores was created by casting the PLT32i prepolymer onto sintered spheres of poly(methyl methacrylate) (PMMA) within precisely patterned molds followed by photocuring, de-molding, and leaching out the PMMA. Pre-fabricated polymer templates were cellularized, assembled, and perfused in order to engineer spatially organized, contractile heart tissue. Structural and functional analyses showed that the primary pores guided heart cell alignment and enabled robust perfusion while the secondary pores increased heart cell retention and reduced polymer volume fraction.
Project description:We employ a reverse-engineering approach to illuminate the neurocomputational building blocks that combine to support controlled semantic cognition: the storage and context-appropriate use of conceptual knowledge. By systematically varying the structure of a computational model and assessing the functional consequences, we identified the architectural properties that best promote some core functions of the semantic system. Semantic cognition presents a challenging test case, as the brain must achieve two seemingly contradictory functions: abstracting context-invariant conceptual representations across time and modalities, while producing specific context-sensitive behaviours appropriate for the immediate task. These functions were best achieved in models possessing a single, deep multimodal hub with sparse connections from modality-specific regions, and control systems acting on peripheral rather than deep network layers. The reverse-engineered model provides a unifying account of core findings in the cognitive neuroscience of controlled semantic cognition, including evidence from anatomy, neuropsychology and functional brain imaging.
Project description:Surface engineered nanoparticles (metallic and nonmetallic) have gained tremendous attention for precise imaging and therapeutics of cell/tumors at molecular and anatomic levels. These tiny agents have shown their specific physicochemical properties for early-stage disease diagnosis and cancer theranostics applications (imaging and therapeutics by a single system). For example, gold nanorods (AuNRs) demonstrate better photothermal response and radiodensity for theranostics applications. However, upon near infrared light exposure these AuNRs lose their optical property which is characteristic of phototherapy of cancer. To overcome this issue, silica coating is a safe choice for nanorods which not only stabilizes them but also provides extra space for cargo loading and makes them multifunctional in cancer theranostics applications. On the other hand, various small molecules have been coated on the surface of nanoparticles (organic, inorganic, and biological) which improve their biocompatibility, blood circulation time, specific biodistribution and tumor binding ability. A few of them have been reached in clinical trials, but, struggling with FDA approval due to engineering and biological barriers. Moreover, nanoparticles also face various challenges of reliability, reproducibility, degradation, tumor entry and exit in translational research. On the other hand, cargo carrier nanoparticles have been facing critical issues of premature leakage of loaded cargo either anticancer drug or imaging probes. Hence, various gate keepers (quantum dots to supramolecules) known nanovalves have been engineered on the pore opening of the cargo systems. Here, a review on the evolution of nanoparticles and their choice for diagnostics and therapeutics applications has been discussed. In this context, basic requirements of multifunctional theranostics design for targeted imaging and therapy have been highlighted and with several challenges. Major hurdles experienced in the surface engineering routes (coating to nanovalves approach) and limitations of the designed theranostics such as poor biocompatibility, low photostability, non-specific targeting, low cargo capacity, poor biodegradation and lower theranostics efficiency are discussed in-depth. The current scenario of theranostics systems and their multifunctional applications have been presented in this article.
Project description:Mate choice behaviors are among the most important reproductive isolating barriers in many animals. Little is known about the genetic basis of reproductively isolating behaviors, but examples to date provide evidence that they can have a simple genetic basis. However, it is unclear if these results indicate that individual genes with large effects are common, or are instead due to ascertainment biases. Here, we present the results of a QTL mapping study for the most important behavioral isolating barrier between Drosophila simulans and D. sechellia: male mate choice. Our QTL results initially suggested that differences in male mate choice may be due to a couple loci with large effects. However, as we divided the largest-effect QTL using stable introgression strains, we found evidence of multiple interacting loci. We further find that separate regions of the genome control different aspects of male choice. Taken together, our results suggest that the genetic architecture of mate choice behavior, in this case, is more complex than QTL mapping suggested, highlighting potential challenges to future mapping studies. We discuss the implications of these results as they relate to signal-receiver coevolution, mate choice, and reproductive isolation.