Positioning-Group-Enabled Biocatalytic Oxidative Dearomatization.
Ontology highlight
ABSTRACT: Biocatalysts have the potential to perform reactions with exceptional selectivity and high catalytic efficiency while utilizing safe and sustainable reagents. Despite these positive attributes, the utility of a biocatalyst can be limited by the breadth of substrates that can be accommodated in the active site in a reactive pose. Proven strategies exist for optimizing the performance of a biocatalyst toward unnatural substrates, including protein engineering; however, these methods can be time intensive and require specialized equipment that renders these approaches inaccessible to synthetic chemists. Strategies accessible to chemists for the expansion of a natural enzyme's substrate scope, while maintaining high levels of site- and stereoselectivity, remain elusive. Here, we employ a computationally guided substrate engineering strategy to expand the synthetic utility of a flavin-dependent monooxygenase. Specifically, experimental observations and computational modeling led to the identification of a critical interaction between the substrate and protein which is responsible for orienting the substrate in a pose productive for catalysis. The fundamental hypothesis for this positioning group strategy is supported by binding and kinetic assays as well as computational studies with a panel of compounds. Further, incorporation of this positioning group into substrates through a cleavable ester linkage transformed compounds not oxidized by the biocatalyst SorbC into substrates efficiently oxidatively dearomatized by the wild-type enzyme with the highest levels of site- and stereoselectivity known for this transformation.
SUBMITTER: Dockrey SAB
PROVIDER: S-EPMC6598382 | biostudies-literature | 2019 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA