Ontology highlight
ABSTRACT: Objective
Phosphate (P) and zinc (Zn) are essential plant nutrients required for nodulation, nitrogen-fixation, plant growth and yield. Mostly applied P and Zn nutrients in the soil are converted into unavailable form. A small number of soil microbes have the ability to transform unsolvable forms of P and Zn to an available form. P-Zn-solubilizing rhizobacteria are potential alternates for P and Zn supplement. In the present study, the effect of two P-Zn-solubilizing bacterial strains (Bacillus sp. strain AZ17 and Pseudomonas sp. strain AZ5) was evaluated on the growth of chickpea plant.Methodology
Both strains were purified from the rhizospheric soil of chickpea plant grown-up in sandy soil and rain-fed area (Thal desert). In vitro, both strains solubilize P and Zn as well both strain produce IAA and organic acids. In the field experiments, conducted in the rain-fed area, the positive influence of inoculation with both bacterial isolates AZ5 and AZ17 on chickpea growth was observed.Results
The application of inoculum (strains AZ5 and AZ17) resulted in up to 17.47% and 17.34% increase in grain yield of both types of chickpea grown in fertilized and non-fertilized soil, respectively over non-inoculated control. Strain AZ5 was the most effective inoculum, increasing up to 17.47%, 16.04%, 26.32%, 22.53%, 26.12% and 22.59% in grain yield, straw weight, nodules number, dry weight of nodules, Zn uptake and P uptake respectively, over control.Conclusion
These results indicated that Pseudomonas sp. strain AZ5 and Bacillus sp. strain AZ17 can serve as effective microbial inocula for chickpea, particularly in the rain-fed area.
SUBMITTER: Zaheer A
PROVIDER: S-EPMC6600776 | biostudies-literature |
REPOSITORIES: biostudies-literature