Unknown

Dataset Information

0

Structural studies of antiviral inhibitor with HIV-1 protease bearing drug resistant substitutions of V32I, I47V and V82I.


ABSTRACT: HIV-1 protease inhibitors are effective in HIV/AIDS therapy, although drug resistance is a severe problem. This study examines the effects of four investigational inhibitors against HIV-1 protease with drug resistant mutations of V32I, I47V and V82I (PRTri) that model the inhibitor-binding site of HIV-2 protease. These inhibitors contain diverse chemical modifications on the darunavir scaffold and form new interactions with wild type protease, however, the measured inhibition constants for PRTri mutant range from 17 to 40?nM or significantly worse than picomolar values reported for wild type enzyme. The X-ray crystal structure of PRTri mutant in complex with inhibitor 1?at 1.5?Å resolution shows minor changes in interactions with inhibitor compared with the corresponding wild type PR complex. Instead, the basic amine at P2 of inhibitor together with mutation V82I induces two alternate conformations for the side chain of Arg8 with new interactions with inhibitor and Leu10. Hence, inhibition is influenced by small coordinated changes in hydrophobic interactions.

SUBMITTER: Pawar S 

PROVIDER: S-EPMC6601333 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structural studies of antiviral inhibitor with HIV-1 protease bearing drug resistant substitutions of V32I, I47V and V82I.

Pawar Shrikant S   Wang Yuan-Fang YF   Wong-Sam Andres A   Agniswamy Johnson J   Ghosh Arun K AK   Harrison Robert W RW   Weber Irene T IT  

Biochemical and biophysical research communications 20190512 3


HIV-1 protease inhibitors are effective in HIV/AIDS therapy, although drug resistance is a severe problem. This study examines the effects of four investigational inhibitors against HIV-1 protease with drug resistant mutations of V32I, I47V and V82I (PR<sub>Tri</sub>) that model the inhibitor-binding site of HIV-2 protease. These inhibitors contain diverse chemical modifications on the darunavir scaffold and form new interactions with wild type protease, however, the measured inhibition constant  ...[more]

Similar Datasets

| S-EPMC7251940 | biostudies-literature
| S-EPMC5259968 | biostudies-literature
| S-EPMC2253353 | biostudies-literature
| S-EPMC2751596 | biostudies-literature
| S-EPMC3355519 | biostudies-literature
| S-EPMC5613016 | biostudies-literature
| S-EPMC5161481 | biostudies-literature
| S-EPMC5850901 | biostudies-literature
| S-EPMC140781 | biostudies-literature
| S-EPMC3185505 | biostudies-literature