Knockdown of human telomerase reverse transcriptase induces apoptosis in cervical cancer cell line.
Ontology highlight
ABSTRACT: Background & objectives:: Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase enzyme that maintains telomere ends by the addition of telomeric repeats to the ends of chromosomal DNA, and that may generate immortal cancer cells. Hence, the activity of telomerase is raised in cancer cells including cervical cancer. The present study aimed to validate the unique siRNA loaded chitosan coated poly-lactic-co-glycolic acid (PLGA) nanoparticle targeting hTERT mRNA to knock down the expression of hTERT in HeLa cells. Methods:: The siRNA loaded chitosan coated polylactic-co-glycolic acid (PLGA) nanoparticles were synthesized by double emulsion solvent diffusion method. The characterization of nano-formulation was done to determine efficient siRNA delivery. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot were performed to evaluate silencing efficiency of nano-formulation. Results::Size, zeta potential and encapsulation efficiency of nanoparticles were 249.2 nm, 12.4 mV and 80.5 per cent, respectively. Sustained release of siRNA from prepared nanoparticle was studied for 72 h by ultraviolet method. Staining assays were performed to confirm senescence and apoptosis. Silencing of hTERT mRNA and protein expression were analyzed in HeLa cells by RT-PCR and Western blot. Interpretation & conclusions:: The findings showed that biodegradable chitosan coated PLGA nanoparticles possessed an ability for efficient and successful siRNA delivery. The siRNA-loaded PLGA nanoparticles induced apoptosis in HeLa cells. Further studies need to be done with animal model.
SUBMITTER: Nagapoosanam AL
PROVIDER: S-EPMC6607821 | biostudies-literature | 2019 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA