Unknown

Dataset Information

0

Relativistic electrons generated at Earth's quasi-parallel bow shock.


ABSTRACT: Plasma shocks are the primary means of accelerating electrons in planetary and astrophysical settings throughout the universe. Which category of shocks, quasi-perpendicular or quasi-parallel, accelerates electrons more efficiently is debated. Although quasi-perpendicular shocks are thought to be more efficient electron accelerators, relativistic electron energies recently observed at quasi-parallel shocks exceed theoretical expectations. Using in situ observations at Earth's bow shock, we show that such relativistic electrons are generated by the interaction between the quasi-parallel shock and a related nonlinear structure, a foreshock transient, through two betatron accelerations. Our observations show that foreshock transients, overlooked previously, can increase electron acceleration efficiency at a quasi-parallel shock by an order of magnitude. Thus, quasi-parallel shocks could be more important in generating relativistic electrons, such as cosmic ray electrons, than previously thought.

SUBMITTER: Liu TZ 

PROVIDER: S-EPMC6609210 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6472508 | biostudies-literature
| S-EPMC7287107 | biostudies-literature
| S-EPMC9519459 | biostudies-literature
| S-EPMC9629711 | biostudies-literature
| S-EPMC7483540 | biostudies-literature
| S-EPMC4600758 | biostudies-literature
| S-EPMC9285775 | biostudies-literature
| S-EPMC2606772 | biostudies-literature
| S-EPMC8749006 | biostudies-literature
| S-EPMC4703845 | biostudies-literature