Unknown

Dataset Information

0

The actual electronic band structure of a rubrene single crystal.


ABSTRACT: A proper understanding on the charge mobility in organic materials is one of the key factors to realize highly functionalized organic semiconductor devices. So far, however, although a number of studies have proposed the carrier transport mechanism of rubrene single crystal to be band-like, there are disagreements between the results reported in these papers. Here, we show that the actual dispersion widths of the electronic bands formed by the highest occupied molecular orbital are much smaller than those reported in the literature, and that the disagreements originate from the diffraction effect of photoelectron and the vibrations of molecules. The present result indicates that the electronic bands would not be the main channel for hole mobility in case of rubrene single crystal and the necessity to consider a more complex picture like molecular vibrations mediated carrier transport. These findings open an avenue for a thorough insight on how to realize organic semiconductor devices with high carrier mobility.

SUBMITTER: Nitta J 

PROVIDER: S-EPMC6609628 | biostudies-literature | 2019 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

The actual electronic band structure of a rubrene single crystal.

Nitta Jun J   Miwa Kazumoto K   Komiya Naoki N   Annese Emilia E   Fujii Jun J   Ono Shimpei S   Sakamoto Kazuyuki K  

Scientific reports 20190704 1


A proper understanding on the charge mobility in organic materials is one of the key factors to realize highly functionalized organic semiconductor devices. So far, however, although a number of studies have proposed the carrier transport mechanism of rubrene single crystal to be band-like, there are disagreements between the results reported in these papers. Here, we show that the actual dispersion widths of the electronic bands formed by the highest occupied molecular orbital are much smaller  ...[more]

Similar Datasets

| S-EPMC7215553 | biostudies-literature
| S-EPMC8256417 | biostudies-literature
| S-EPMC6459418 | biostudies-literature
| S-EPMC6376135 | biostudies-literature
| S-EPMC4007094 | biostudies-literature
| S-EPMC4444955 | biostudies-other
| S-EPMC4432628 | biostudies-literature
| S-EPMC4635360 | biostudies-literature
| S-EPMC9609572 | biostudies-literature
| S-EPMC5469805 | biostudies-other