Project description:Background: The interest in cannabidiol (CBD) for treatment of epilepsy has been increasing over the last years. However, practitioner's attitudes concerning the use of CBD for epilepsy treatment appears to be divided and data about its clinical use in daily practice are not available. Objective: To improve the knowledge about the current use of CBD amongst European practitioners treating children and adolescents for epilepsy. Methods: Cross-sectional survey using an open-access online questionnaire for physicians treating children or adolescents for epilepsy within eight European countries from December 2017 to March 2018. Results: One-hundred fifty-five physicians participated in the survey. CBD is increasingly used by 45% (69/155) of participants, treating a mean (range) number of 3 (1-35) with CBD. Only 48% of the participants prescribing CBD are exclusively using purified CBD to treat children and adolescents with epilepsy, the remainder also applies preparations containing delta9-tetrahydrocannabinol (THC). Reported daily CBD doses range from < 10 to 50 mg/kg body weight. Management of CBD therapy in regard of monitoring side effects and adjusting concomitant therapy differs widely amongst participants. Their primary objective for commencing CBD is improving patient's quality of life. Participants frequently receive inquiries about CBD treatment but only 40% may actively suggest CBD as a treatment option. Of the 85 participants currently not using CBD for epilepsy treatment, 70% would consider using CBD if available in their country of practice or given the opportunity to become familiar with this treatment option. Conclusions: CBD is increasingly used by participating physicians but individual experience remains limited. There are very diverse opinions about the use of CBD to treat epilepsy in children and adolescents and widely differing views on how to manage the CBD treatment.
Project description:Epilepsy is an important disease that affects brain function, particularly in those under 3 years old. Uncontrolled seizures can affect cognitive function and quality of life. For these reasons, many trials have been conducted to investigate treatments for pediatric epilepsy. Currently, many antiepileptic drugs are available for the treatment of epilepsy, but cases of intractable epilepsy continue to exist. In the past, cannabis has been tested as a potential treatment of intractable epilepsy. Since 2013, 10 epilepsy centers in America have conducted research regarding the efficacy of cannabis to treat epilepsy. Cannabis has many components, including cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). THC has psychoactive properties exerted through its binding of the cannabinoid receptor (CBR) whereas CBD is a CBR antagonist. The inhibition of epilepsy by CBD may therefore be caused by various mechanisms, although the detailed mechanisms of CBD actions have not yet been well defined. In most studies, trial doses of CBD were 2-5 mg/kg/day. Several such studies have shown that CBD does have efficacy for treatment of epilepsy. Reported adverse effects of CBD were mostly mild, including drowsiness, diarrhea, and decreased appetite. Severe adverse reactions requiring treatment, such as status epilepticus, have also been reported but it is not clear that this is related to CBD. Furthermore, many previous studies have been limited by an open-label or survey design. In future, double-blind, controlled trials are required and the use of CBD to treat other neurological problems should also be investigated.
Project description:In patients with treatment-resistant epilepsy (TRE), cannabidiol (CBD) produces variable improvement in seizure control. Patients in the University of Alabama at Birmingham CBD Expanded Access Program (EAP) were enrolled in the genomic study and genotyped using the Affymetrix Drug Metabolizing Enzymes and Transporters plus array. Associations between variants and CBD response (≥50% seizure reduction) and tolerability (diarrhea, sedation, and abnormal liver function) was evaluated under dominant and recessive models. Expression quantitative trait loci (eQTL) influencing potential CBD targets was evaluated in the UK Brain Expression Consortium data set (Braineac), and genetic co-expression examined. Of 169 EAP patients, 112 (54.5% pediatric and 50.0% female) were included in the genetic analyses. Patients with AOX1 rs6729738 CC (aldehyde oxidase; odds ratio (OR) 6.69, 95% confidence interval (CI) 2.19-20.41, P = 0.001) or ABP1 rs12539 (diamine oxidase; OR 3.96, 95% CI 1.62-9.73, P = 0.002) were more likely to respond. Conversely, patients with SLC15A1 rs1339067 TT had lower odds of response (OR 0.06, 95% CI 0.01-0.56, P = 0.001). ABCC5 rs3749442 was associated with lower likelihood of response and abnormal liver function tests, and higher likelihood of sedation. The eQTL revealed that rs1339067 decreased GPR18 expression (endocannabinoid receptor) in white matter (P = 5.6 × 10-3 ), and rs3749442 decreased hippocampal HTR3E expression (serotonin 5-HT3E ; P = 8.5 × 10-5 ). Furthermore, 75% of genes associated with lower likelihood of response were co-expressed. Pharmacogenetic variation is associated with CBD response and influences expression of CBD targets in TRE. Implicated pathways, including cholesterol metabolism and glutathione conjugation, demonstrate potential interactions between CBD and common medications (e.g., statins and acetaminophen) that may require closer monitoring. These results highlight the role of pharmacogenes in fundamental biologic processes and potential genetic underpinnings of treatment-resistance.
Project description:Cannabidiol (CBD) is one of the cannabinoids with non-psychotropic action, extracted from Cannabis sativa. CBD is a terpenophenol and it has received a great scientific interest thanks to its medical applications. This compound showed efficacy as anti-seizure, antipsychotic, neuroprotective, antidepressant and anxiolytic. The neuroprotective activity appears linked to its excellent anti-inflammatory and antioxidant properties. The purpose of this paper is to evaluate the use of CBD, in addition to common anti-epileptic drugs, in the severe treatment-resistant epilepsy through an overview of recent literature and clinical trials aimed to study the effects of the CBD treatment in different forms of epilepsy. The results of scientific studies obtained so far the use of CBD in clinical applications could represent hope for patients who are resistant to all conventional anti-epileptic drugs.
Project description:ObjectiveCannabidiol (CBD) is approved for treatment of Dravet syndrome (DS), Lennox-Gastaut syndrome (LGS), and tuberous sclerosis complex (TSC). Several studies suggest antiseizure effects also beyond these three epilepsy syndromes.MethodsIn a retrospective multicenter study, we analyzed the efficacy and tolerability of CBD in patients with epilepsy at 16 epilepsy centers.ResultsThe study cohort comprised 311 patients with epilepsy with a median age of 11.3 (0-72) years (235 children and adolescents, 76 adults). Therapy with CBD was off-label in 91.3% of cases due to age, epilepsy subtype, lack of adjunct therapy with clobazam, and/or higher dose applied. CBD titration regimens were slower than recommended, with good tolerability of higher doses particularly in children. Of all patients, 36.9% experienced a reduction in seizure frequency of >50%, independent of their epilepsy subtype or clobazam co-medication. The median observation period was 15.8 months. About one third of all patients discontinued therapy within the observation period due to adverse effects or lack of efficacy. Adverse effects were reported frequently (46.9%).SignificanceOur study highlights that CBD has an antiseizure effect comparable to other antiseizure medications with a positive safety profile independent of the epilepsy subtype. Comedication with clobazam was not associated with a better outcome. Higher doses to achieve seizure frequency reduction were safe, particularly in children. These findings call for further trials for an extended approval of CBD for other epilepsy subtypes and for children <2 years of age.
Project description:Background: Δ9-Tetrahydrocannabinol (THC, a CB1 receptor agonist) and Cannabidiol (CBD, a non-competitive antagonist of endogenous CB1 and CB2 ligands) are two primary components of Cannabis species, and may modulate fear learning in mammals. The CB1 receptor is widely distributed throughout the cortex and some limbic regions typically associated with fear learning. Humans with posttraumatic disorder (PTSD) have widespread upregulation of CB1 receptor density and reduced availability of endogenous cannabinoid anandamide, suggesting a role for the endocannabinoid system in PTSD. Pharmacological blockade of memory reconsolidation following recall of a conditioned response modulates the expression of learned fear and may represent a viable target for the development of new treatments for PTSD. In this study, we focused on assessing the impact of the key compounds of the marijuana plant both singly and, more importantly, in concert on attenuation of learned fear. Specifically, we assessed the impact of THC, CBD, and/or the remaining plant materials (post-extraction; background material), on reconsolidation of learned fear. Method: Male Sprague-Dawley rats received six 1.0 mA continuous foot shocks (contextual training). Twenty-four hours later, rats were re-exposed to the context. Immediately following memory retrieval (recall) rats received oral administration of low dose THC, high dose THC, CBD, CBD + low THC, CBD + high THC [as isolated phytochemicals and, in separate experiments, in combination with plant background material (BM)]. Rodents were tested for freezing response context re-exposure at 24 h and 7 days following training. Results: CBD alone, but not THC alone, significantly attenuated fear memory reconsolidation when administered immediately after recall. The effect persisted for at least 7 days. A combination of CBD and THC also attenuated the fear response. Plant BM also significantly attenuated reconsolidation of learned fear both on its own and in combination with THC and CBD. Finally, THC attenuated reconsolidation of learned fear only when co-administered with CBD or plant BM. Conclusion: CBD may provide a novel treatment strategy for targeting fear-memories. Furthermore, plant BM also significantly attenuated the fear response. However, whereas THC alone had no significant effects, its effects were modulated by the addition of other compounds. Future research should investigate some of the other components present in the plant BM (such as terpenes) for their effects alone, or in combination with isolated pure cannabinoids, on fear learning.
Project description:BackgroundCannabidiol (CBD) has become a promising therapeutic option in the treatment of epilepsy. Recent studies provide robust evidence that CBD is effective and safe. Limitations in current knowledge and regulatory issues still limit CBD use. CBD use regarding epilepsy types still lacks clear guidelines.ObjectiveTo critically review the main current pharmacological features and clinical issues regarding CBD use in epilepsy, to provide current regulatory background regarding CBD use in Brazil, and to suggest a practical CBD therapeutic guide in Brazil.MethodsNon-systematic literature review (up to February 2022) of current concepts of CBD and epilepsy, including the authors' personal experience.ResultsFive pivotal trials have led to CBD approval as an adjunctive treatment for Dravet and Lennox-Gastaut syndromes, and for the tuberous sclerosis complex. Efficacy of CBD in other drug-resistant epilepsies remains not completely understood. CBD adverse event profile and drug interactions are better understood. CBD is well tolerated. In Brazil, CBD is not classified as a medication, but as a product subject to a distinct regulatory legislation. CBD is still not offered by the National Brazilian health system, but can be purchased in authorized pharmacies or imported under prescription and signed informed consent.ConclusionCBD is a recognized novel treatment for epilepsy. Future well-designed studies and public health strategies are needed to offer widespread access to CBD, and to improve the quality of life of people living with epilepsy in Brazil.
Project description:Anxiety and trauma-related disorders are psychiatric diseases with a lifetime prevalence of up to 25%. Phobias and post-traumatic stress disorder (PTSD) are characterized by abnormal and persistent memories of fear-related contexts and cues. The effects of psychological treatments such as exposure therapy are often only temporary and medications can be ineffective and have adverse side effects. Growing evidence from human and animal studies indicates that cannabidiol, the main non-psychotomimetic phytocannabinoid present in Cannabis sativa, alleviates anxiety in paradigms assessing innate fear. More recently, the effects of cannabidiol on learned fear have been investigated in preclinical studies with translational relevance for phobias and PTSD. Here we review the findings from these studies, with an emphasis on cannabidiol regulation of contextual fear. The evidence indicates that cannabidiol reduces learned fear in different ways: (1) cannabidiol decreases fear expression acutely, (2) cannabidiol disrupts memory reconsolidation, leading to sustained fear attenuation upon memory retrieval, and (3) cannabidiol enhances extinction, the psychological process by which exposure therapy inhibits learned fear. We also present novel data on cannabidiol regulation of learned fear related to explicit cues, which indicates that auditory fear expression is also reduced acutely by cannabidiol. We conclude by outlining future directions for research to elucidate the neural circuit, psychological, cellular, and molecular mechanisms underlying the regulation of fear memory processing by cannabidiol. This line of investigation may lead to the development of cannabidiol as a novel therapeutic approach for treating anxiety and trauma-related disorders such as phobias and PTSD in the future.
Project description:BackgroundPrior studies have evaluated the use of various constituents of cannabis for their anti-seizure effects. Specifically, cannabidiol, a non-psychoactive component of cannabis, has been investigated for treatment-resistant epilepsy, but more information is needed particularly on its use in a pediatric population.ObjectiveThe objective of this study was to evaluate the pharmacokinetics and safety of a synthetic pharmaceutical-grade cannabidiol oral solution in pediatric patients with treatment-resistant epilepsy.MethodsIn this open-label study, pediatric patients (aged 1 to ≤ 17 years) with treatment-resistant epilepsy received cannabidiol oral solution administered as add-on to their current antiepileptic drug regimen. Patients received a single dose (5, 10, or 20 mg/kg) on day 1 and twice-daily dosing on days 4 through 10 (10-mg/kg [cohort 1], 20-mg/kg [cohort 2], or 40-mg/kg [cohort 3] total daily dose). Serial blood samples were collected on day 1 before dosing and up to 72 h post-dose, and on day 10 before dosing and up to 24 h post-dose. Blood samples to assess trough concentrations of cannabidiol were collected on day 6 (for patients aged 12 to ≤ 17 years), day 8 (for patients aged 2 to ≤ 17 years), and day 9 (for patients aged 6 to ≤ 17 years).ResultsOverall, 61 patients across three cohorts received one of three doses of cannabidiol oral solution (mean age, 7.6 years). The age composition was similar in the three cohorts. There was a trend for increased cannabidiol exposure with increased cannabidiol oral solution dosing, but overall exposure varied. Approximately 2-6 days of twice-daily dosing provided steady-state concentrations of cannabidiol. A bi-directional drug interaction occurred with cannabidiol and clobazam. Concomitant administration of clobazam with 40 mg/kg/day of cannabidiol oral solution resulted in a 2.5-fold increase in mean cannabidiol exposure. Mean plasma clobazam concentrations were 1.7- and 2.2-fold greater in patients receiving clobazam concomitantly with 40 mg/kg/day of cannabidiol oral solution compared with 10 mg/kg/day and 20 mg/kg/day. Mean plasma norclobazam values were 1.3- and 1.9-fold higher for patients taking clobazam plus 40 mg/kg/day of cannabidiol oral solution compared with the 10-mg/kg/day and 20-mg/kg/day groups. All doses were generally well tolerated, and common adverse events that occurred at > 10% were somnolence (21.3%), anemia (18.0%), and diarrhea (16.4%).ConclusionsInter-individual variability in systemic cannabidiol exposure after pediatric patient treatment with cannabidiol oral solution was observed but decreased with multiple doses. Short-term administration was generally safe and well tolerated.Trial registrationClinicalTrials.gov (NCT02324673).