Lung Lavage Granulocyte Patterns and Clinical Phenotypes in Children with Severe, Therapy-Resistant Asthma.
Ontology highlight
ABSTRACT: BACKGROUND:Children with severe asthma have frequent exacerbations despite guidelines-based treatment with high-dose corticosteroids. The importance of refractory lung inflammation and infectious species as factors contributing to poorly controlled asthma in children is poorly understood. OBJECTIVE:To identify prevalent granulocyte patterns and potential pathogens as targets for revised treatment, 126 children with severe asthma underwent clinically indicated bronchoscopy. METHODS:Diagnostic tests included bronchoalveolar lavage (BAL) for cell count and differential, bacterial and viral studies, spirometry, and measurements of blood eosinophils, total IgE, and allergen-specific IgE. Outcomes were compared among 4 BAL granulocyte patterns. RESULTS:Pauci-granulocytic BAL was the most prevalent granulocyte category (52%), and children with pauci-granulocytic BAL had less postbronchodilator airflow limitation, less blood eosinophilia, and less detection of BAL enterovirus compared with children with mixed granulocytic BAL. Children with isolated neutrophilia BAL were differentiated by less blood eosinophilia than those with mixed granulocytic BAL, but greater prevalence of potential bacterial pathogens compared with those with pauci-granulocytic BAL. Children with isolated eosinophilia BAL had features similar to those with mixed granulocytic BAL. Children with mixed granulocytic BAL took more maintenance prednisone, and had greater blood eosinophilia and allergen sensitization compared with those with pauci-granulocytic BAL. CONCLUSIONS:In children with severe, therapy-resistant asthma, BAL granulocyte patterns and infectious species are associated with novel phenotypic features that can inform pathway-specific revisions in treatment. In 32% of children evaluated, BAL revealed corticosteroid-refractory eosinophilic infiltration amenable to anti-TH2 biological therapies, and in 12%, a treatable bacterial pathogen.
SUBMITTER: Teague WG
PROVIDER: S-EPMC6612461 | biostudies-literature | 2019 Jul - Aug
REPOSITORIES: biostudies-literature
ACCESS DATA