Unknown

Dataset Information

0

Nutrient composition and safety evaluation of simulated isobutanol distillers dried grains with solubles and associated fermentation metabolites when fed to male Ross 708 broiler chickens (Gallus domesticus).


ABSTRACT: Saccharomyces cerevisiae genetically engineered to enhance butanol production will be used in a manufacturing process similar to that of fuel ethanol production, including co-production of distillers products for animal feed. A poultry feeding trial was conducted with simulated isobutanol-derived dried distillers grains with solubles (bDDGS), comprising non-fermentable corn solids and heat-inactivated Butamax modified yeast (BMY), to determine potential health effects. Simulated dried distillers grains were produced in 2 variants: bDDGS containing 10% (B10) or 50% (B50) BMY. The BMY concentrations were selected based on a conservative estimate from ethanol-derived distillers grains (eDDGS) approximating 2.5 and 12-fold margins of exposure. The B10 and B50 DDGS were evaluated in a 42-day feeding trial using male Ross 708 broiler chickens fed diets containing eDDGS, B50 DDGS, or B10 DDGS without or with isobutanol, 2,3-butanediol, and isobutyric acid metabolites each at target concentrations of 2 (B10-2), 5 (B10-5), or 10 (B10-10) times the anticipated specification limit in the commercial product. Diets were fed (n = 50 broilers/treatment) in 3 phases: starter phase with 8% DDGS and grower and finisher phases each with 15% DDGS. No statistically significant differences or diet-related effects on mortality, clinical pathology, or organ weights, and no microscopic observations associated with consumption of diets containing B10, B50, or B10 supplemented with metabolites at any targeted exposure level were observed. A lower (P < 0.05) mean absolute bursa of Fabricius weight in the B10-10 group compared to the B10 group was considered to be within the range of biological variability. A non-significant trend toward lower weight, gains, and feed intake, and higher feed:gain ratio was observed in the B10-10 group, and was considered a non-adverse palatability effect of consuming high concentrations of metabolites. These results demonstrate that consumption of phase diets containing simulated DDGS from a novel isobutanol production process was well-tolerated.

SUBMITTER: Roper JM 

PROVIDER: S-EPMC6613701 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nutrient composition and safety evaluation of simulated isobutanol distillers dried grains with solubles and associated fermentation metabolites when fed to male Ross 708 broiler chickens (Gallus domesticus).

Roper Jason M JM   Smith Brenda L BL   Caverly Rae Jessica M JM   Huang Emily E   Walker Carl A CA   McNaughton James L JL   Chen Alice A   Reidinger Kathy S KS  

PloS one 20190708 7


Saccharomyces cerevisiae genetically engineered to enhance butanol production will be used in a manufacturing process similar to that of fuel ethanol production, including co-production of distillers products for animal feed. A poultry feeding trial was conducted with simulated isobutanol-derived dried distillers grains with solubles (bDDGS), comprising non-fermentable corn solids and heat-inactivated Butamax modified yeast (BMY), to determine potential health effects. Simulated dried distillers  ...[more]

Similar Datasets

| S-EPMC7487462 | biostudies-literature
| S-EPMC6276254 | biostudies-literature
| S-EPMC8062754 | biostudies-literature
| S-EPMC7528553 | biostudies-literature
| S-EPMC7013493 | biostudies-literature
| S-EPMC6946975 | biostudies-literature
| S-EPMC4259391 | biostudies-other
| S-EPMC8276383 | biostudies-literature
| PRJNA561064 | ENA
| PRJNA771098 | ENA