Unknown

Dataset Information

0

Structural evidence for an in trans base selection mechanism involving Loop1 in polymerase μ at an NHEJ double-strand break junction.


ABSTRACT: Eukaryotic DNA polymerase (Pol) X family members such as Pol μ and terminal deoxynucleotidyl transferase (TdT) are important components for the nonhomologous DNA end-joining (NHEJ) pathway. TdT participates in a specialized version of NHEJ, V(D)J recombination. It has primarily nontemplated polymerase activity but can take instructions across strands from the downstream dsDNA, and both activities are highly dependent on a structural element called Loop1. However, it is unclear whether Pol μ follows the same mechanism, because the structure of its Loop1 is disordered in available structures. Here, we used a chimeric TdT harboring Loop1 of Pol μ that recapitulated the functional properties of Pol μ in ligation experiments. We solved three crystal structures of this TdT chimera bound to several DNA substrates at 1.96-2.55 Å resolutions, including a full DNA double-strand break (DSB) synapsis. We then modeled the full Pol μ sequence in the context of one these complexes. The atomic structure of an NHEJ junction with a Pol X construct that mimics Pol μ in a reconstituted system explained the distinctive properties of Pol μ compared with TdT. The structure suggested a mechanism of base selection relying on Loop1 and taking instructions via the in trans templating base independently of the primer strand. We conclude that our atomic-level structural observations represent a paradigm shift for the mechanism of base selection in the Pol X family of DNA polymerases.

SUBMITTER: Loc'h J 

PROVIDER: S-EPMC6615693 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3898472 | biostudies-literature
| S-EPMC2638008 | biostudies-literature
2022-09-11 | E-MTAB-12037 | biostudies-arrayexpress
| S-EPMC7460576 | biostudies-literature
| S-EPMC5114520 | biostudies-literature
2022-08-25 | E-MTAB-12061 | biostudies-arrayexpress
| S-EPMC7959522 | biostudies-literature
| S-EPMC7144918 | biostudies-literature
| S-EPMC1669771 | biostudies-literature
| S-EPMC3325207 | biostudies-literature