Ontology highlight
ABSTRACT: Background
Intermittent hypoxia (IH) induced by obstructive sleep apnea (OSA) is a leading factor affecting cardiovascular fibrosis. Under IH condition, smooth muscle cells (SMAs) respond by dedifferentiation, which is associated with vascular remodelling. The expression of prolyl 4-hydroxylase domain protein 3 (PHD3) increases under hypoxia. However, the role of PHD3 in OSA-induced SMA dedifferentiation and cardiovascular fibrosis remains uncertain.Methods
We explored the mechanism of cardiovascular remodelling in C57BL/6 mice exposed to IH for 3 months and investigated the mechanism of PHD3 in improving the remodelling in vivo and vitro.Results
In vivo remodelling showed that IH induced cardiovascular fibrosis via SMC dedifferentiation and that fibrosis improved when PHD3 was overexpressed. In vitro remodelling showed that IH induced SMA dedifferentiation, which secretes much collagen I. PHD3 overexpression in cultured SMCs reversed the dedifferentiation by degrading and inactivating HIF-1?.Conclusion
OSA-induced cardiovascular fibrosis was associated with SMC dedifferentiation, and PHD3 overexpression may benefit its prevention by reversing the dedifferentiation. Therefore, PHD3 overexpression has therapeutic potential in disease treatment.
SUBMITTER: Tong J
PROVIDER: S-EPMC6621170 | biostudies-literature | 2019
REPOSITORIES: biostudies-literature
Tong Jiayi J Yu Fu-Chao FC Li Yang Y Wei Qin Q Li Chen C Zhen Penghao P Zhang Guanghao G
BioMed research international 20190627
<h4>Background</h4>Intermittent hypoxia (IH) induced by obstructive sleep apnea (OSA) is a leading factor affecting cardiovascular fibrosis. Under IH condition, smooth muscle cells (SMAs) respond by dedifferentiation, which is associated with vascular remodelling. The expression of prolyl 4-hydroxylase domain protein 3 (PHD3) increases under hypoxia. However, the role of PHD3 in OSA-induced SMA dedifferentiation and cardiovascular fibrosis remains uncertain.<h4>Methods</h4>We explored the mechan ...[more]