Unknown

Dataset Information

0

Non-conventional mechanism of ferroelectric fatigue via cation migration.


ABSTRACT: The unique properties of ferroelectric materials enable a plethora of applications, which are hindered by the phenomenon known as ferroelectric fatigue that leads to the degradation of ferroelectric properties with polarization cycling. Multiple microscopic models explaining fatigue have been suggested; however, the chemical origins remain poorly understood. Here, we utilize multimodal chemical imaging that combines atomic force microscopy with time-of-flight secondary mass spectrometry to explore the chemical phenomena associated with fatigue in PbZr0.2Ti0.8O3 (PZT) thin films. Investigations reveal that the degradation of ferroelectric properties is correlated with a local chemical change and migration of electrode ions into the PZT structure. Density functional theory simulations support the experimental results and demonstrate stable doping of the thin surface PZT layer with copper ions, leading to a decrease in the spontaneous polarization. Overall, the performed research allows for the observation and understanding of the chemical phenomena associated with polarization cycling and their effects on ferroelectric functionality.

SUBMITTER: Ievlev AV 

PROVIDER: S-EPMC6624312 | biostudies-literature | 2019 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Non-conventional mechanism of ferroelectric fatigue via cation migration.

Ievlev Anton V AV   Kc Santosh S   Vasudevan Rama K RK   Kim Yunseok Y   Lu Xiaoli X   Alexe Marin M   Cooper Valentino R VR   Kalinin Sergei V SV   Ovchinnikova Olga S OS  

Nature communications 20190711 1


The unique properties of ferroelectric materials enable a plethora of applications, which are hindered by the phenomenon known as ferroelectric fatigue that leads to the degradation of ferroelectric properties with polarization cycling. Multiple microscopic models explaining fatigue have been suggested; however, the chemical origins remain poorly understood. Here, we utilize multimodal chemical imaging that combines atomic force microscopy with time-of-flight secondary mass spectrometry to explo  ...[more]

Similar Datasets

| S-EPMC8612688 | biostudies-literature
| S-EPMC4033922 | biostudies-other
| S-EPMC6399219 | biostudies-literature
| S-EPMC6480143 | biostudies-literature
| S-EPMC7409290 | biostudies-literature
| S-EPMC4984409 | biostudies-literature
| S-EPMC3709492 | biostudies-literature
| S-EPMC4359660 | biostudies-literature
2021-12-29 | PXD030658 | iProX