Unknown

Dataset Information

0

Micropatterned Polymer Nanorod Forests and Their Use for Dual Drug Loading and Regulation of Cell Adhesion.


ABSTRACT: This paper describes a simple method for the fabrication of micropatterned polymer nanorod forests by templating against the channels in an anodized aluminum oxide membrane partially masked by gelatin. The nanorod forests easily support bimodal drug loading, with one drug encapsulated in the nanorods and the other physisorbed on their surface. During cell culture, preosteoblasts are predominantly attracted to the nanorod forests and driven to climb up along the nanorods. This type of scaffold integrates both microscale and nanoscale features into a single substrate, holding great potential for applications in cell culture and tissue engineering.

SUBMITTER: Zhu C 

PROVIDER: S-EPMC6625765 | biostudies-literature | 2016 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Micropatterned Polymer Nanorod Forests and Their Use for Dual Drug Loading and Regulation of Cell Adhesion.

Zhu Chunlei C   Xue Jiajia J   Gilroy Kyle D KD   Huo Da D   Shen Song S   Xia Younan Y  

ACS applied materials & interfaces 20161212 50


This paper describes a simple method for the fabrication of micropatterned polymer nanorod forests by templating against the channels in an anodized aluminum oxide membrane partially masked by gelatin. The nanorod forests easily support bimodal drug loading, with one drug encapsulated in the nanorods and the other physisorbed on their surface. During cell culture, preosteoblasts are predominantly attracted to the nanorod forests and driven to climb up along the nanorods. This type of scaffold in  ...[more]

Similar Datasets

| S-EPMC3053427 | biostudies-literature
| S-EPMC6630455 | biostudies-literature
| S-EPMC3933204 | biostudies-literature
| S-EPMC9798866 | biostudies-literature
| S-EPMC5359015 | biostudies-literature
| S-EPMC5558731 | biostudies-other
| S-EPMC6437988 | biostudies-literature
| S-EPMC6148439 | biostudies-literature
| S-EPMC9059833 | biostudies-literature
| S-EPMC2841778 | biostudies-literature