Unknown

Dataset Information

0

Impact of Maternal Malnutrition on Gut Barrier Defense: Implications for Pregnancy Health and Fetal Development.


ABSTRACT: Small intestinal Paneth cells, enteric glial cells (EGC), and goblet cells maintain gut mucosal integrity, homeostasis, and influence host physiology locally and through the gut-brain axis. Little is known about their roles during pregnancy, or how maternal malnutrition impacts these cells and their development. Pregnant mice were fed a control diet (CON), undernourished by 30% vs. control (UN), or fed a high fat diet (HF). At day 18.5 (term = 19), gut integrity and function were assessed by immunohistochemistry and qPCR. UN mothers displayed reduced mRNA expression of Paneth cell antimicrobial peptides (AMP; Lyz2, Reg3g) and an accumulation of villi goblet cells, while HF had reduced Reg3g and mucin (Muc2) mRNA and increased lysozyme protein. UN fetuses had increased mRNA expression of gut transcription factor Sox9, associated with reduced expression of maturation markers (Cdx2, Muc2), and increased expression of tight junctions (TJ; Cldn-7). HF fetuses had increased mRNA expression of EGC markers (S100b, Bfabp, Plp1), AMP (Lyz1, Defa1, Reg3g), and TJ (Cldn-3, Cldn-7), and reduced expression of an AMP-activator (Tlr4). Maternal malnutrition altered expression of genes that maintain maternal gut homeostasis, and altered fetal gut permeability, function, and development. This may have long-term implications for host-microbe interactions, immunity, and offspring gut-brain axis function.

SUBMITTER: Srugo SA 

PROVIDER: S-EPMC6628366 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Impact of Maternal Malnutrition on Gut Barrier Defense: Implications for Pregnancy Health and Fetal Development.

Srugo Sebastian A SA   Bloise Enrrico E   Nguyen Tina Tu-Thu Ngoc TTN   Connor Kristin L KL  

Nutrients 20190619 6


Small intestinal Paneth cells, enteric glial cells (EGC), and goblet cells maintain gut mucosal integrity, homeostasis, and influence host physiology locally and through the gut-brain axis. Little is known about their roles during pregnancy, or how maternal malnutrition impacts these cells and their development. Pregnant mice were fed a control diet (CON), undernourished by 30% vs. control (UN), or fed a high fat diet (HF). At day 18.5 (term = 19), gut integrity and function were assessed by imm  ...[more]

Similar Datasets

| S-EPMC4636307 | biostudies-other
| S-EPMC4216596 | biostudies-literature
| S-EPMC3245731 | biostudies-literature
| S-EPMC4470660 | biostudies-other
| S-EPMC7466580 | biostudies-literature
| S-EPMC4485539 | biostudies-literature
| S-EPMC4175174 | biostudies-literature
| S-EPMC6307973 | biostudies-literature
| S-EPMC8026962 | biostudies-literature
2019-12-06 | GSE133525 | GEO