Determination of the MiRNAs Related to Bean Pyralid Larvae Resistance in Soybean Using Small RNA and Transcriptome Sequencing.
Ontology highlight
ABSTRACT: Soybean is one of the most important oil crops in the world. Bean pyralid is a major leaf-feeding insect of soybean. In order to screen out the functional genes and regulatory pathways related to the resistance for bean pyralid larvae, the small RNA and transcriptome sequencing were performed based on the highly resistant material (Gantai-2-2) and highly susceptible material (Wan 82-178) of soybean. The results showed that, when comparing 48 h feeding with 0 h feeding, 55 differentially expressed miRNAs were identified in Gantai-2-2 and 58 differentially expressed miRNAs were identified in Wan82-178. When comparing Gantai-2-2 with Wan82-178, 77 differentially expressed miRNAs were identified at 0 h feeding, and 70 differentially expressed miRNAs were identified at 48 h feeding. The pathway analysis of the predicted target genes revealed that the plant hormone signal transduction, RNA transport, protein processing in the endoplasmic reticulum, zeatin biosynthesis, ubiquinone and other terpenoid-quinone biosynthesis, and isoquinoline alkaloid biosynthesis may play important roles in soybean's defense against the stress caused by bean pyralid larvae. According to conjoint analysis of the miRNA/mRNA, a total of 20 differentially expressed miRNAs were negatively correlated with 26 differentially expressed target genes. The qRT-PCR analysis verified that the small RNA sequencing results were credible. According to the analyses of the differentially expressed miRNAs, we speculated that miRNAs are more likely to play key roles in the resistance to insects. Gma-miR156q, Gma-miR166u, Gma-miR166b, Gma-miR166j-3p, Gma-miR319d, Gma-miR394a-3p, Gma-miR396e, and so on-as well as their negatively regulated differentially expressed target genes-may be involved in the regulation of soybean resistance to bean pyralid larvae. These results laid a foundation for further in-depth research regarding the action mechanisms of insect resistance.
SUBMITTER: Zeng W
PROVIDER: S-EPMC6628378 | biostudies-literature | 2019 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA