Unknown

Dataset Information

0

Dissecting fat-tailed fluctuations in the cytoskeleton with active micropost arrays.


ABSTRACT: The ability of animal cells to crawl, change their shape, and respond to applied force is due to their cytoskeleton: A dynamic, cross-linked network of actin protein filaments and myosin motors. How these building blocks assemble to give rise to cells' mechanics and behavior remains poorly understood. Using active micropost array detectors containing magnetic actuators, we have characterized the mechanics and fluctuations of cells' actomyosin cortex and stress fiber network in detail. Here, we find that both structures display remarkably consistent power law viscoelastic behavior along with highly intermittent fluctuations with fat-tailed distributions of amplitudes. Notably, this motion in the cortex is dominated by occasional large, step-like displacement events, with a spatial extent of several micrometers. Overall, our findings for the cortex appear contrary to the predictions of a recent active gel model, while suggesting that different actomyosin contractile units act in a highly collective and cooperative manner. We hypothesize that cells' actomyosin components robustly self-organize into marginally stable, plastic networks that give cells' their unique biomechanical properties.

SUBMITTER: Shi Y 

PROVIDER: S-EPMC6628664 | biostudies-literature | 2019 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dissecting fat-tailed fluctuations in the cytoskeleton with active micropost arrays.

Shi Yu Y   Porter Christopher L CL   Crocker John C JC   Reich Daniel H DH  

Proceedings of the National Academy of Sciences of the United States of America 20190625 28


The ability of animal cells to crawl, change their shape, and respond to applied force is due to their cytoskeleton: A dynamic, cross-linked network of actin protein filaments and myosin motors. How these building blocks assemble to give rise to cells' mechanics and behavior remains poorly understood. Using active micropost array detectors containing magnetic actuators, we have characterized the mechanics and fluctuations of cells' actomyosin cortex and stress fiber network in detail. Here, we f  ...[more]

Similar Datasets

| S-EPMC6049921 | biostudies-literature
| S-EPMC5430964 | biostudies-literature
| S-EPMC6594772 | biostudies-literature
| S-EPMC9061871 | biostudies-literature
| S-EPMC7704779 | biostudies-literature
| S-EPMC3297797 | biostudies-other
| S-EPMC7703634 | biostudies-literature
| S-EPMC8130542 | biostudies-literature
| S-EPMC4767187 | biostudies-literature
| S-EPMC4548239 | biostudies-other