Unknown

Dataset Information

0

Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition.


ABSTRACT: A correct interplay between dopamine (DA) and glutamate is essential for corticostriatal synaptic plasticity and motor activity. In an experimental model of Parkinson's disease (PD) obtained in rats, the complete depletion of striatal DA, mimicking advanced stages of the disease, results in the loss of both forms of striatal plasticity: long-term potentiation (LTP) and long-term depression (LTD). However, early PD stages are characterized by an incomplete reduction in striatal DA levels. The mechanism by which this incomplete reduction in DA level affects striatal synaptic plasticity and glutamatergic synapses is unknown. Here we present a model of early PD in which a partial denervation, causing mild motor deficits, selectively affects NMDA-dependent LTP but not LTD and dramatically alters NMDA receptor composition in the postsynaptic density. Our findings show that DA decrease influences corticostriatal synaptic plasticity depending on the level of depletion. The use of the TAT2A cell-permeable peptide, as an innovative therapeutic strategy in early PD, rescues physiological NMDA receptor composition, synaptic plasticity, and motor behavior.

SUBMITTER: Paille V 

PROVIDER: S-EPMC6634757 | biostudies-literature | 2010 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition.

Paillé Vincent V   Picconi Barbara B   Bagetta Vincenza V   Ghiglieri Veronica V   Sgobio Carmelo C   Di Filippo Massimiliano M   Viscomi Maria T MT   Giampà Carmela C   Fusco Francesca R FR   Gardoni Fabrizio F   Bernardi Giorgio G   Greengard Paul P   Di Luca Monica M   Calabresi Paolo P  

The Journal of neuroscience : the official journal of the Society for Neuroscience 20101001 42


A correct interplay between dopamine (DA) and glutamate is essential for corticostriatal synaptic plasticity and motor activity. In an experimental model of Parkinson's disease (PD) obtained in rats, the complete depletion of striatal DA, mimicking advanced stages of the disease, results in the loss of both forms of striatal plasticity: long-term potentiation (LTP) and long-term depression (LTD). However, early PD stages are characterized by an incomplete reduction in striatal DA levels. The mec  ...[more]

Similar Datasets

| S-EPMC7402527 | biostudies-literature
| S-EPMC2820521 | biostudies-literature
| S-EPMC5363660 | biostudies-literature
| S-EPMC3334887 | biostudies-literature
| S-EPMC3831970 | biostudies-literature
| S-EPMC2947143 | biostudies-literature
| S-EPMC3641351 | biostudies-literature
| S-EPMC4132661 | biostudies-literature
| S-EPMC3657766 | biostudies-literature
| S-EPMC2898885 | biostudies-literature