Project description:A comprehensive understanding of the changes in gene expression in cell types involved in idiopathic pulmonary fibrosis (IPF) will shed light on the mechanisms underlying the loss of alveolar epithelial cells and development of honeycomb cysts and fibroblastic foci. We sought to understand changes in IPF lung cell transcriptomes and gain insight into innate immune aspects of pathogenesis.We investigated IPF pathogenesis using single-cell RNA-sequencing of fresh lung explants, comparing human IPF fibrotic lower lobes reflecting late disease, upper lobes reflecting early disease and normal lungs.IPF lower lobes showed increased fibroblasts, and basal, ciliated, goblet and club cells, but decreased alveolar epithelial cells, and marked alterations in inflammatory cells. We found three discrete macrophage subpopulations in normal and fibrotic lungs, one expressing monocyte markers, one highly expressing FABP4 and INHBA (FABP4hi), and one highly expressing SPP1 and MERTK (SPP1hi). SPP1hi macrophages in fibrotic lower lobes showed highly upregulated SPP1 and MERTK expression. Low-level local proliferation of SPP1hi macrophages in normal lungs was strikingly increased in IPF lungs.Co-localisation and causal modelling supported the role for these highly proliferative SPP1hi macrophages in activation of IPF myofibroblasts in lung fibrosis. These data suggest that SPP1hi macrophages contribute importantly to lung fibrosis in IPF, and that therapeutic strategies targeting MERTK and macrophage proliferation may show promise for treatment of this disease.
Project description:A comprehensive understanding of the changes in gene expression in cell types involved in idiopathic pulmonary fibrosis (IPF) will shed light on the mechanisms underlying the loss of alveolar epithelial cells, and development of honeycomb cysts and fibroblastic foci. We sought to understand changes in IPF lung cell transcriptomes and gain insight into innate immune aspects of pathogenesis. We investigated IPF pathogenesis using single cell RNA-sequencing of fresh lung explants, comparing human IPF fibrotic lower lobes reflecting late disease, upper lobes reflecting early disease and normal lungs. IPF lower lobes showed increased fibroblasts, and basal, ciliated, goblet and club cells, but decreased alveolar epithelial cells, and marked alterations in inflammatory cells. We found three discrete macrophage subpopulations in normal and fibrotic lungs, one expressing monocyte markers, one highly expressing FABP4 and INHBA (FABP4hi), and one highly expressing SPP1 and MERTK (SPP1hi). SPP1hi macrophages in fibrotic lower lobes showed highly upregulated SPP1 and MERTK expression. Low-level local proliferation of SPP1hi macrophages in normal lungs was strikingly increased in IPF lungs. Co-localization and causal modeling supported the role for these highly proliferative SPP1hi macrophages in activation of IPF myofibroblasts in lung fibrosis. These data suggest SPP1hi macrophages contribute importantly to lung fibrosis in IPF, and that therapeutic strategies targeting MERTK and macrophage proliferation may show promise for treatment of this disease.
Project description:Idiopathic pulmonary fibrosis (IPF) is a disease related to AT2 cell. We used flow cytometry to analyze the epithelial component of donor and IPF lungs. From the live cells, we first excluded the CD31PosCD45Pos and then selected the EPCAMPos cells for further analysis using the human AT2 cell marker HTll-280 and the surface marker PD-L1. Our data indicate that, the bona fide differentiated AT2 cells (HTll-280High PD-L1Neg), were drastically reduced in the context of IPF. More interestingly, the number of HTll-280Low/Neg PD-L1High was drastically increased, suggesting that HTll-280Low PD-L1High epithelial cells could represent a pool of progenitors linked to the deficient AT2 lineage. The aim of this experiment is further characterization of AT2 and PDL1+ cells in donor and IPF.
Project description:The aim of the current study is to find plasma-based biomarker candidates for Idiopathic Pulmonary Fibrosis (IPF). Incidence of IPF seems to be increasing in Europe and there is significant mortality associated with IPF. There are no sensistive biomarkers for IPF and diagnosis is entirely clinical and/or histopathological which is often delayed. Minimally invasive biomarkers of IPF would be expected to aid clinicians perfrom early diagnosis of IPF enabling better management of the disease.
Project description:Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and highly lethal lung disease with unknown etiology and poor prognosis.
Project description:Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial lung disease associated with aging that is characterized by the histopathological pattern of usual interstitial pneumonia. Although an understanding of the pathogenesis of IPF is incomplete, recent advances delineating specific clinical and pathologic features of IPF have led to better definition of the molecular pathways that are pathologically activated in the disease. In this review we highlight several of these advances, with a focus on genetic predisposition to IPF and how genetic changes, which occur primarily in epithelial cells, lead to activation of profibrotic pathways in epithelial cells. We then discuss the pathologic changes within IPF fibroblasts and the extracellular matrix, and we conclude with a summary of how these profibrotic pathways may be interrelated.
Project description:Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology with considerable morbidity and mortality. Cigarette smoking is one of the most recognized risk factors for development of IPF. Furthermore, recent work suggests that smoking may have a detrimental effect on survival of patients with IPF. The mechanism by which smoking may contribute to the pathogenesis of IPF is largely unknown. However, accumulating evidence suggests that increased oxidative stress might promote disease progression in IPF patients who are current and former smokers. In this review, potential mechanisms by which cigarette smoking affects IPF, the effects of cigarette smoking on accelerated loss of lung function in patients with IPF, key genetic studies evaluating the potential candidate genes and gene-environment (smoking) interaction, diagnosis, and treatment with emphasis on recently closed and ongoing clinical trials are presented.
Project description:This review examines the recent literature on molecular biomarkers of idiopathic pulmonary fibrosis (IPF). Specific attention is dedicated to the recent studies that identified the genes associated with IPF and the peripheral blood biomarkers that predict outcome in IPF.Multiple studies attempted to identify diagnostic and predictive biomarkers in IPF. Until recently, these studies were limited in size and lacked replication, but still when taken together provided convincing evidence that changes in blood proteins (KL-6, SP-A, MMP-7, CCL-18, among others) or cells (fibrocytes and T-cell subpopulations) are indicative of the disease presence and outcome. More recently, larger studies have identified gene polymorphisms associated with IPF, as well as protein markers and integrated clinical and molecular prediction rules that accurately predict outcome in patients with IPF.The peripheral blood contains disease presence and outcome relevant information, and suggests distinct biologically defined outcome trajectories in patients with IPF. Although recently identified biomarkers should still be validated in multiple clinical contexts, there is sufficient evidence to suggest that collection of peripheral blood biomarkers needs to be incorporated in the design of drug studies and that some of these markers be clinically evaluated in lung transplant prioritization.
Project description:Idiopathic pulmonary fibrosis (IPF), a fatal disease that is a result of complex interactions between genetics and the environment, has limited treatment options. We have identified the MUC5B promoter polymorphism and other common genetic variants that in aggregate explain roughly one-third of disease risk. The MUC5B promoter polymorphism is the strongest and the most replicated genetic risk factor for IPF, appears to be protective and predictive in this disease, and is likely involved in disease pathogenesis through an increase in MUC5B expression in terminal bronchi and honeycombed cysts. Expression of MUC5B is also highly correlated with expression of cilium genes in IPF lung. Our work suggests that mucociliary dysfunction in the distal airway may play a role in the development of progressive fibroproliferative lung disease. In addition, our work has important implications for secondary prevention, early detection, and future early and personalized treatment based on genetic profiles.
Project description:Idiopathic pulmonary fibrosis (IPF) is a complex lung disease of unknown etiology. Development of IPF is influenced by both genetic and environmental factors. Recent work by our and other groups has identified strong genetic predisposition factors for the development of pulmonary fibrosis, and cigarette smoke remains the most strongly associated environmental exposure risk factor. Gene expression profiling studies of IPF lung have taught us quite a bit about the biology of this fatal disease, and those of peripheral blood have provided important biomarkers. However, epigenetic marks may be the missing link that connects the environmental exposure in genetically predisposed individuals to transcriptional changes associated with disease development. Moreover, epigenetic marks represent a promising therapeutic target for IPF. In this review, the disease is introduced, genetic and gene expression studies in IPF are summarized, exposures relevant to IPF and known epigenetic changes associated with cigarette smoke exposure are discussed, and epigenetic studies conducted so far in IPF are summarized. Limitations, challenges, and future opportunities in this field are also discussed.