Unknown

Dataset Information

0

ZMYM2 inhibits NANOG-mediated reprogramming.


ABSTRACT: Background: NANOG is a homeodomain-containing transcription factor which forms one of the hubs in the pluripotency network and plays a key role in the reprogramming of somatic cells and epiblast stem cells to naïve pluripotency.  Studies have found that NANOG has many interacting partners and some of these were shown to play a role in its ability to mediate reprogramming. In this study, we set out to analyse the effect of NANOG interactors on the reprogramming process. Methods: Epiblast stem cells and somatic cells were reprogrammed to naïve pluripotency using MEK/ERK inhibitor PD0325901, GSK3? inhibitor CHIR99021 and Leukaemia Inhibitory Factor (together termed 2i Plus LIF). Zmym2 was knocked out using the CRISPR/Cas9 system or overexpressed using the PiggyBac system. Reprogramming was quantified after ZMYM2 deletion or overexpression, in diverse reprogramming systems. In addition, embryonic stem cell self renewal was quantified in differentiation assays after ZMYM2 removal or overexpression. Results: In this work, we identified ZMYM2/ZFP198, which physically associates with NANOG as a key negative regulator of NANOG-mediated reprogramming of both epiblast stem cells and somatic cells. In addition, ZMYM2 impairs the self renewal of embryonic stem cells and its overexpression promotes differentiation. Conclusions: We propose that ZMYM2 curtails NANOG's actions during the reprogramming of both somatic cells and epiblast stem cells and impedes embryonic stem cell self renewal, promoting differentiation.

SUBMITTER: Lawrence M 

PROVIDER: S-EPMC6640293 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

ZMYM2 inhibits NANOG-mediated reprogramming.

Lawrence Moyra M   Theunissen Thorold W TW   Lombard Patrick P   Adams David J DJ   Silva José C R JCR  

Wellcome open research 20190606


<b>Background:</b> NANOG is a homeodomain-containing transcription factor which forms one of the hubs in the pluripotency network and plays a key role in the reprogramming of somatic cells and epiblast stem cells to naïve pluripotency.  Studies have found that NANOG has many interacting partners and some of these were shown to play a role in its ability to mediate reprogramming. In this study, we set out to analyse the effect of NANOG interactors on the reprogramming process. <b>Methods:</b> Epi  ...[more]

Similar Datasets

2019-04-26 | GSE130317 | GEO
| PRJNA535499 | ENA
| S-EPMC3479613 | biostudies-literature
| S-EPMC3923195 | biostudies-literature
| S-EPMC3025321 | biostudies-literature
| S-EPMC5425684 | biostudies-literature
| S-EPMC4487246 | biostudies-literature
| S-EPMC6389130 | biostudies-literature
| S-EPMC4792153 | biostudies-literature
| S-EPMC6848184 | biostudies-literature